Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth

Abstract

Malignant melanoma is the most aggressive form of skin cancer and its incidence has doubled in the last two decades. It represents only 4% of skin cancer cases per year, but causes as many as 74% of skin cancer deaths. Early detection of malignant melanoma is associated with survival rates of up to 90%, but later detection (stage III to stage IV) is associated with survival rates of only 10%. Dysregulation of microRNA (miRNA) expression has been linked to tumor development and progression by functioning either as a tumor suppressor, an oncogene or a metastasis regulator in multiple cancer types. To understand the role of miRNA in the pathogenesis of malignant melanoma and identify biomarkers of metastasis, miRNA expression profiles in skin punches from 33 metastatic melanoma patients and 14 normal healthy donors were compared. We identified a cluster of 14 miRNAs on the X chromosome, termed the miR-506-514 cluster, which was consistently overexpressed in nearly all melanomas tested (30–60 fold, P<0.001), regardless of mutations in N-ras or B-raf. Inhibition of the expression of this cluster as a whole, or one of its sub-clusters (Sub-cluster A) consisting of six mature miRNAs, led to significant inhibition of cell growth, induction of apoptosis, decreased invasiveness and decreased colony formation in soft agar across multiple melanoma cell lines. Sub-cluster A of the miR-506-514 cluster was critical for maintaining the cancer phenotype, but the overexpression of the full cluster was necessary for melanocyte transformation. Our results provide new insights into the functional role of this miRNA cluster in melanoma, and suggest new approaches to treat or diagnose this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ambros V, Lee RC . (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 265: 131–158.

    CAS  PubMed  Google Scholar 

  • Bandarchi B, Ma L, Navab R, Seth A, Rasty G . (2010). From melanocyte to metastatic malignant melanoma. Dermatol Res Practice 2010: 1–8.

    Article  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Feilotter HE, Paré GC, Zhang X, Pemberton JG, Garady C et al. (2010). MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol 176: 2520–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin M, Herscovitch M, Zhang N, Waxman DJ, Gilmore TD . (2009). Overexpression of an activated REL mutant enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile. Oncogene 28: 2100–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotto GP . (2008). Notch tumor suppressor function. Oncogene 27: 5115–5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykxhoorn D, Wu Y, Xie H, Yu F, Lal A, Petrocca F et al. (2009). miR-200 enhances mouse breast cancer cell colonization to form distant metastases. Plos One 4: e7181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68: 2745–2754.

    Article  CAS  PubMed  Google Scholar 

  • Hartman Z, Yang X, Glass O, Lei G, Osada T, Dave S et al. (2011). HER2 overexpression elicits a pro-inflammatory IL-6 autocrine signaling loop that is critical for tumorigenesis. Cancer Res 71: 4380–4391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häusler SF, Keller A, Chandran PA, Ziegler K, Zipp K, Heuer S et al. (2010). Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer 103: 693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoek K, Rimm D, Williams K, Zhao H, Ariyan S, Lin A et al. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64: 5270–5282.

    Article  CAS  PubMed  Google Scholar 

  • Klein W, Wu B, Zhao S, Wu H, Klein-Szanto A, Tahan S . (2007). Increased expression of stem cell markers in malignant melanoma. Mod Path 20: 102–107.

    Article  CAS  Google Scholar 

  • Kuphal S, Lodermeyer S, Bataille F, Schuierer M, Hoang BH, Bosserhoff AK . (2006). Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 25: 5027–5036.

    Article  CAS  PubMed  Google Scholar 

  • Landais S, Landry S, Legault P, Rassart E . (2007). Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67: 5699–5707.

    Article  CAS  PubMed  Google Scholar 

  • Leidinger P, Keller A, Borries A, Reichrath J, Rass K, Jager SU et al. (2010). High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 10: 262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu Y, Dong D, Zhang Z . (2010). Evolution of an X-linked primate-specific micro RNA cluster. Mol Biol Evol 27: 671–683.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: 4373–4379.

    Article  CAS  PubMed  Google Scholar 

  • Mirnezami AH, Pickard K, Zhang L, Primrose JN, Packham G . (2009). MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol 35: 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Monsel G, Ortonne N, Bagot M, Bensussan A, Dumaz N . (2010). C-Kit mutants require hypoxia-inducible factor 1α to transform melanocytes. Oncogene 29: 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Montesano R, Drevon C, Kuroki T, Saint Vincent L, Handleman S, Sanford KK et al. (1977). Test for malignant transformation of rat liver cells in culture: cytology, growth in soft agar, and production of plasminogen activator. J Natl Cancer Inst 59: 1651–1658.

    Article  CAS  PubMed  Google Scholar 

  • Mueller DW, Bosserhoff AK . (2009). Role of miRNAs in the progression of malignant melanoma. Br J Cancer 101: 551–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller DW, Rehli M, Bosserhoff AK . (2009). miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 29: 1740–1751.

    Article  Google Scholar 

  • Nakamura J, Garcia E, Pieper RO . (2008). S6K1 plays a key role in glial transformation. Cancer Res 68: 6516–6523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive V, Jiang I, He L . (2010). mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42: 1348–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Fisher DE . (2008). Notch and melanocytes: diverse outcomes from a single signal. J Invest Derm 128: 2571–2574.

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M et al. (2009). Main roads to melanoma. J Transl Med 7: 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al. (2010). Identification of the miR-106b25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3: ra29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen S, Kordon E, Callahan R, Smith GH . (2001). Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene 20: 5291–5301.

    Article  CAS  PubMed  Google Scholar 

  • Rhim JS . (1983). Cell aggregation assay: a rapid means of evaluating and selecting in vitro transformed cells. Cancer Detect Prev 6: 381–388.

    CAS  PubMed  Google Scholar 

  • Rigel DS, Russak J, Friedman R . (2010). The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J Clin 60: 301–316.

    Article  PubMed  Google Scholar 

  • Scholz CC, Berger DP, Winterhalter BR, Henss H, Fiebig HH . (1990). Correlation of drug response in patients and in the clonogenic assay with solid human tumor xenografts. Eur J Cancer 26: 901–905.

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M . (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18: 549–557.

    Article  CAS  PubMed  Google Scholar 

  • Segura MF, Belitskaya-Lévy I, Rose AE, Zakrzewski J, Gaziel A, Hanniford D et al. (2010). Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res 16: 1577–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z . (2009). Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15: 1443–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed M, Fenoglio-Preiser C, Skau K, Weber GF . (2008). Acetylcholinesterase supports anchorage independence in colon cancer. Clin Exp Metastasis 25: 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Trainer DL, Kline T, McCabe FL, Faucette LF, Field J, Chaikin M et al. (1988). Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer 41: 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Peng Y, Wang W, Su B . (2007). Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 17: 612–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zirvi KA, Masui H, Giulani FC, Kaplan NO . (1983). Correlation of drug sensitivity on human colon adenocarcinoma cells grown in soft agar and in athymic mice. Int J Cancer 32: 45–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K L Streicher or Y Yao.

Ethics declarations

Competing interests

The authors are full-time employees of MedImmune, LLC.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streicher, K., Zhu, W., Lehmann, K. et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 31, 1558–1570 (2012). https://doi.org/10.1038/onc.2011.345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.345

Keywords

This article is cited by

Search

Quick links