Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions

Abstract

The BNIP3 subfamily of BH3-only proteins consists of BNIP3 and BNIP3-like (BNIP3L) proteins. These proteins form stable homodimerization complexes that localize to the outer membrane of the mitochondria after cellular stress. This promotes either apoptotic or non-apoptotic cell death such as autophagic cell death. Although the mammalian cells contain both members of this subfamily, the genome of Caenorhabditis elegans codes for a single BNIP3 ortholog, ceBNIP3, which shares homology in the transmembrane (TM) domain and in a conserved region close to the BH3 domain of mammalian BNIP3 protein. The cell death activities of BNIP3 and BNIP3L are determined by either the BH3 domain or the C-terminal TM domain. The TM domain of BNIP3 is unique, as it is capable of autonomous stable dimerization and contributes to mitochondrial localization of BNIP3. In knockout mouse models, BNIP3L was shown to be essential for normal erythrocyte differentiation and hematopoietic homeostasis, whereas BNIP3 plays a role in cellular responses to ischemia/reperfusion injury in the heart. Both BNIP3 and BNIP3L play a role in cellular responses to stress. Under hypoxia, both BNIP3 and BNIP3L expression levels are elevated and contribute to hypoxia-induced cell death. In addition, these proteins play critical roles in disease states. In heart disease, both BNIP3 and BNIP3L play a critical role in cardiomyocyte cell death following ischemic and non-ischemic injuries. In cancer, expression of BNIP3 and BNIP3L is downregulated by promoter hypermethylation or by homozygous deletion of the gene locus in certain cancers, whereas their expression was increased in other cancers. In addition, BNIP3 expression has been correlated with poor prognosis in some cancers. The results reviewed here suggest that BNIP3 and BNIP3L may be novel therapeutic targets for intervention because of their pathological roles in regulating cell death in disease states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abe T, Toyota M, Suzuki H, Murai M, Akino K, Ueno M et al. (2005). Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40: 504–510.

    Article  CAS  PubMed  Google Scholar 

  • Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A . (2007). Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14: 500–510.

    Article  CAS  PubMed  Google Scholar 

  • Aerbajinai W, Giattina M, Lee YT, Raffeld M, Miller JL . (2003). The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102: 712–717.

    Article  CAS  PubMed  Google Scholar 

  • Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH et al. (1997). Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 100: 2722–2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M et al. (2005). Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11: 3094–3101.

    Article  CAS  PubMed  Google Scholar 

  • Aouacheria A, Brunet F, Gouy M . (2005). Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol 22: 2395–2416.

    Article  CAS  PubMed  Google Scholar 

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ et al. (2008). Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Bacon AL, Fox S, Turley H, Harris AL . (2007). Selective silencing of the hypoxia-inducible factor 1 target gene BNIP3 by histone deacetylation and methylation in colorectal cancer. Oncogene 26: 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Baetz D, Regula KM, Ens K, Shaw J, Kothari S, Yurkova N et al. (2005). Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 112: 3777–3785.

    Article  CAS  PubMed  Google Scholar 

  • Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B et al. (1994). Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK . (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97: 9082–9087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton TR, Henson ES, Baijal P, Eisenstat DD, Gibson SB . (2006). The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer 118: 1660–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA et al. (2007). Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117: 2713–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Cizeau J, Vande Velde C, Park JH, Bozek G, Bolton J et al. (1999). Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 274: 7–10.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC et al. (1997). The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 186: 1975–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Fink T, Zhang XY, Ebbesen P, Zachar V . (2005). Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis. Differentiation 73: 350–363.

    Article  CAS  PubMed  Google Scholar 

  • Cizeau J, Ray R, Chen G, Gietz RD, Greenberg AH . (2000). The C. elegans orthologue ceBNIP3 interacts with CED-9 and CED-3 but kills through a BH3- and caspase-independent mechanism. Oncogene 19: 5453–5463.

    Article  CAS  PubMed  Google Scholar 

  • Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S . (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64: 4286–4293.

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB et al. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Diwan A, Koesters AG, Capella D, Geiger H, Kalfa TA, Dorn GW . (2008a). Targeting erythroblast-specific apoptosis in experimental anemia. Apoptosis 13: 1022–1030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT et al. (2007a). Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA 104: 6794–6799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG et al. (2007b). Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825–2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW . (2008b). Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117: 396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore SP, Qian T, Grissom SF, Lemasters JJ . (2001). The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15: 2286–2287.

    Article  CAS  PubMed  Google Scholar 

  • Erkan M, Kleeff J, Esposito I, Giese T, Ketterer K, Buchler MW et al. (2005). Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421–4432.

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Kim Y, Im S, Chung E, Hwang S, Sohn M et al. (2001). Cloning of BNIP3h, a member of proapoptotic BNIP3 family genes. Exp Mol Med 33: 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK et al. (2004). Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6: 597–609.

    Article  CAS  PubMed  Google Scholar 

  • Frazier DP, Wilson A, Graham RM, Thompson JW, Bishopric NH, Webster KA . (2006). Acidosis regulates the stability, hydrophobicity, and activity of the BH3-only protein Bnip3. Antioxid Redox Signal 8: 1625–1634.

    Article  CAS  PubMed  Google Scholar 

  • Galvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA et al. (2006). Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem 281: 1442–1448.

    Article  CAS  PubMed  Google Scholar 

  • Giatromanolaki A, Koukourakis MI, Sowter HM, Sivridis E, Gibson S, Gatter KC et al. (2004). BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clin Cancer Res 10: 5566–5571.

    Article  CAS  PubMed  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Graham RM, Frazier DP, Thompson JW, Haliko S, Li H, Wasserlauf BJ et al. (2004). A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 207: 3189–3200.

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K et al. (2001). Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8: 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Ha SD, Ng D, Lamothe J, Valvano MA, Han J, Kim SO . (2007). Mitochondrial proteins Bnip3 and Bnip3L are involved in anthrax lethal toxin-induced macrophage cell death. J Biol Chem 282: 26275–26283.

    Article  CAS  PubMed  Google Scholar 

  • Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA et al. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14: 146–157.

    Article  CAS  PubMed  Google Scholar 

  • Holm TM, Braun A, Trigatti BL, Brugnara C, Sakamoto M, Krieger M et al. (2002). Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood 99: 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  • Imazu T, Shimizu S, Tagami S, Matsushima M, Nakamura Y, Miki T et al. (1999). Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 18: 4523–4529.

    Article  CAS  PubMed  Google Scholar 

  • Ishida M, Sunamura M, Furukawa T, Akada M, Fujimura H, Shibuya E et al. (2007). Elucidation of the relationship of BNIP3 expression to gemcitabine chemosensitivity and prognosis. World J Gastroenterol 13: 4593–4597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, Itoh A, Pleasure D . (2003). Bcl-2-related protein family gene expression during oligodendroglial differentiation. J Neurochem 85: 1500–1512.

    Article  CAS  PubMed  Google Scholar 

  • Kammouni W, Wong K, Ma G, Firestein GS, Gibson SB, El-Gabalawy HS . (2007). Regulation of apoptosis in fibroblast-like synoviocytes by the hypoxia-induced Bcl-2 family member Bcl-2/adenovirus E1B 19-kd protein-interacting protein 3. Arthritis Rheum 56: 2854–2863.

    Article  CAS  PubMed  Google Scholar 

  • Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S . (2005). Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24: 980–991.

    Article  CAS  PubMed  Google Scholar 

  • Kent G, Minick OT, Volini FI, Orfei E . (1966). Autophagic vacuoles in human red cells. Am J Pathol 48: 831–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Cho JJ, Ha J, Park JH . (2002). The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria. Arch Biochem Biophys 398: 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD . (1996). Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol 179: 402–411.

    Article  CAS  PubMed  Google Scholar 

  • Knowles HJ, Athanasou NA . (2008). Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol 215: 56–66.

    Article  CAS  PubMed  Google Scholar 

  • Kothari S, Cizeau J, McMillan-Ward E, Israels SJ, Bailes M, Ens K et al. (2003). BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22: 4734–4744.

    Article  CAS  PubMed  Google Scholar 

  • Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA . (2002). Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 99: 12825–12830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB . (2008). Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 295: H2025–H2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Ycaza JE, Gustafsson AB . (2007). Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J 405: 407–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y et al. (2008). Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10: 897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon PC, Baril P, Bhakta V, Chelala C, Caulee K, Harada T et al. (2007). S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 67: 6786–6795.

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458–471.

    Article  CAS  PubMed  Google Scholar 

  • Mammucari C, Schiaffino S, Sandri M . (2008). Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4: 524–526.

    Article  CAS  PubMed  Google Scholar 

  • Manka D, Millhorn DE . (2006). A potential molecular link between aerobic glycolysis and cancer. Cell Cycle 5: 343–344.

    Article  CAS  PubMed  Google Scholar 

  • Manka D, Spicer Z, Millhorn DE . (2005). Bcl-2/adenovirus E1B 19 kDa interacting protein-3 knockdown enables growth of breast cancer metastases in the lung, liver, and bone. Cancer Res 65: 11689–11693.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Rendon E, Hale SJ, Ryan D, Baban D, Forde SP, Roubelakis M et al. (2007). Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 25: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  • Matsushima M, Fujiwara T, Takahashi E, Minaguchi T, Eguchi Y, Tsujimoto Y et al. (1998). Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chromosomes Cancer 21: 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Mellor HR, Harris AL . (2007). The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev 26: 553–566.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf DG, Law PB, DeGrado WF . (2007). Mutagenesis data in the automated prediction of transmembrane helix dimers. Proteins 67: 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Mizutani A, Furukawa T, Adachi Y, Ikehara S, Taketani S . (2002). A zinc-finger protein, PLAGL2, induces the expression of a proapoptotic protein Nip3, leading to cellular apoptosis. J Biol Chem 277: 15851–15858.

    Article  CAS  PubMed  Google Scholar 

  • Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H et al. (2005a). Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer 92: 1165–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K et al. (2005b). Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021–1027.

    CAS  PubMed  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J et al. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ et al. (1996). Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335: 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  • Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L et al. (2007). Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer 97: 1432–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K, Oda K et al. (1999). A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ 6: 314–325.

    Article  CAS  PubMed  Google Scholar 

  • Okami J, Simeone DM, Logsdon CD . (2004). Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64: 5338–5346.

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA et al. (1997). Apoptosis in the failing human heart. N Engl J Med 336: 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  • Rashmi R, Pillai SG, Vijayalingam S, Ryerse J, Chinnadurai G . (2008). BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene 27: 1366–1375.

    Article  CAS  PubMed  Google Scholar 

  • Ray R, Chen G, Vande Velde C, Cizeau J, Park JH, Reed JC et al. (2000). BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 275: 1439–1448.

    Article  CAS  PubMed  Google Scholar 

  • Real PJ, Benito A, Cuevas J, Berciano MT, de Juan A, Coffer P et al. (2005). Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res 65: 8151–8157.

    Article  CAS  PubMed  Google Scholar 

  • Regula KM, Ens K, Kirshenbaum LA . (2002). Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91: 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM . (1996). Genetic instability induced by the tumor microenvironment. Cancer Res 56: 5754–5757.

    CAS  PubMed  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M . (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Russ WP, Engelman DM . (2000). The GxxxG motif: a framework for transmembrane helix–helix association. J Mol Biol 296: 911–919.

    Article  CAS  PubMed  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275: 983–986.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Kastner R, Aguirre-Chen C, Kietzmann T, Saul I, Busto R, Ginsberg MD . (2004). Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Res 1001: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104: 19500–19505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw J, Kirshenbaum LA . (2008). Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy 4: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D et al. (2008). Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA 105: 20734–20739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw J, Zhang T, Rzeszutek M, Yurkova N, Baetz D, Davie JR et al. (2006). Transcriptional silencing of the death gene BNIP3 by cooperative action of NF-kappaB and histone deacetylase 1 in ventricular myocytes. Circ Res 99: 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  • Sowter HM, Ferguson M, Pym C, Watson P, Fox SB, Han C et al. (2003). Expression of the cell death genes BNip3 and NIX in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade. J Pathol 201: 573–580.

    Article  CAS  PubMed  Google Scholar 

  • Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL . (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669–6673.

    CAS  PubMed  Google Scholar 

  • Sulistijo ES, Jaszewski TM, MacKenzie KR . (2003). Sequence-specific dimerization of the transmembrane domain of the ‘BH3-only’ protein BNIP3 in membranes and detergent. J Biol Chem 278: 51950–51956.

    Article  CAS  PubMed  Google Scholar 

  • Sulistijo ES, MacKenzie KR . (2006). Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix–helix interactions. J Mol Biol 364: 974–990.

    Article  CAS  PubMed  Google Scholar 

  • Sun JL, He XS, Yu YH, Chen ZC . (2004). [Expression and structure of BNIP3L in lung cancer]. Ai Zheng 23: 8–14.

    CAS  PubMed  Google Scholar 

  • Syed F, Odley A, Hahn HS, Brunskill EW, Lynch RA, Marreez Y et al. (2004). Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95: 1200–1206.

    Article  CAS  PubMed  Google Scholar 

  • Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC et al. (2007). BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13: 467–474.

    Article  CAS  PubMed  Google Scholar 

  • Theodorakis P, D’Sa-Eipper C, Subramanian T, Chinnadurai G . (1996). Unmasking of a proliferation-restraining activity of the anti-apoptosis protein EBV BHRF1. Oncogene 12: 1707–1713.

    CAS  PubMed  Google Scholar 

  • Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . (2007). BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229–6242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unoki M, Nakamura Y . (2003). EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene 22: 2172–2185.

    Article  CAS  PubMed  Google Scholar 

  • Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S et al. (2000). BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454–5468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D . (2003). HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ 10: 798–807.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, D’Sa-Eipper C, Gong XL, Chinnadurai G . (1998a). Regulation of apoptosis by a Caenorhabditis elegans BNIP3 homolog. Oncogene 17: 2525–2530.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Han JW, Dionne CA, Boyd JM, Chinnadurai G . (1999). BNIP3alpha: a human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res 59: 533–537.

    CAS  PubMed  Google Scholar 

  • Yasuda M, Theodorakis P, Subramanian T, Chinnadurai G . (1998b). Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem 273: 12415–12421.

    Article  CAS  PubMed  Google Scholar 

  • Yurkova N, Shaw J, Blackie K, Weidman D, Jayas R, Flynn B et al. (2008). The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res 102: 472–479.

    Article  CAS  PubMed  Google Scholar 

  • Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC et al. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8: 725–730.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ney PA . (2008). NIX induces mitochondrial autophagy in reticulocytes. Autophagy 4: 354–356.

    Article  PubMed  Google Scholar 

  • Zhang Z, Yang X, Zhang S, Ma X, Kong J . (2007). BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia. Stroke 38: 1606–1613.

    Article  CAS  PubMed  Google Scholar 

  • Zhaorigetu S, Wan G, Kaini R, Jiang Z, Hu CA . (2008). ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 4: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  • Zhou XM, Liu Y, Payne G, Lutz RJ, Chittenden T . (2000). Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem 275: 25046–25051.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GC received grant support from the National Cancer Institute (grants CA-33616, CA-116262 and CA-73803). SBG was supported by a grant from the Canadian Institutes for Health Research MOP-64330 and is a Manitoba Research Chair supported by the Manitoba Health Research Council. We thank Lorrie Kirshenbaum for comments on this review and Teralee Burton for assistance in writing the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Chinnadurai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinnadurai, G., Vijayalingam, S. & Gibson, S. BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene 27 (Suppl 1), S114–S127 (2008). https://doi.org/10.1038/onc.2009.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.49

Keywords

This article is cited by

Search

Quick links