Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration

Abstract

Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor that is activated by trypsin-like proteinases. PAR2 is detected in breast tumor specimens; however, it is not clear how PAR2 level in breast cancer cell/tissues compares with normal cell/tissues. Here, we show the elevation of PAR2 protein level in 76 of 105 breast tumor specimens but only 5 of 24 normal breast tissues. PAR2 level is also higher in breast cancer cell lines than that in normal breast cells and non-cancerous breast cell lines. To determine the role of PAR2 in breast carcinogenesis, we examined the effect of PAR2 agonists on cell proliferation and migration. Our studies show that PAR2 agonists (PAR2-activating peptide and trypsin) are neither potent growth enhancers nor chemoattractants to breast cancer cells. Instead, PAR2 agonists induce significant chemokinesis. PAR2-mediated chemokinesis is Gαi-dependent, and inhibiting Src kinase activity or silencing c-Src expression blocks PAR2-mediated chemokinesis. These results suggest that c-Src works downstream of Gαi to mediate this PAR2 agonist-induced event. To characterize c-Src effector, we reveal that PAR2 agonists activate JNKs in a Src-dependent manner and that JNK activity is essential for PAR2-mediated chemokinesis. Moreover, PAR2 agonist stimulation leads to paxillin Ser178 phosphorylation and paxillin(S178A) mutant inhibits PAR2-mediated chemokinesis. In conclusion, our studies show that PAR2 agonists facilitate breast cancer cell chemokinesis through the Gαi-c-Src-JNK-paxillin signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abdulrahman M, Maina EN, Morris MR, Zatyka M, Raval RR, Banks RE et al. (2007). Identification of novel VHL targets that are associated with the development of renal cell carcinoma. Oncogene 26: 1661–1672.

    Article  CAS  Google Scholar 

  • Arora P, Ricks TK, Trejo J . (2007). Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J Cell Sci 120: 921–928.

    Article  CAS  Google Scholar 

  • Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD et al. (2006). The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25: 2234–2244.

    Article  CAS  Google Scholar 

  • Black PC, Mize GJ, Karlin P, Greenberg DL, Hawley SJ, True LD et al. (2007). Overexpression of protease-activated receptors-1, -2, and-4 (PAR-1, -2, and -4) in prostate cancer. Prostate 67: 743–756.

    Article  CAS  Google Scholar 

  • Brown MC, Turner CE . (2004). Paxillin: adapting to change. Physiol Rev 84: 1315–1339.

    Article  CAS  Google Scholar 

  • Caruso R, Pallone F, Fina D, Gioia V, Peluso I, Caprioli F et al. (2006). Protease-activated receptor-2 activation in gastric cancer cells promotes epidermal growth factor receptor trans-activation and proliferation. Am J Pathol 169: 268–278.

    Article  CAS  Google Scholar 

  • Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO . (2007). P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 67: 3601–3608.

    Article  CAS  Google Scholar 

  • Ciccarelli M, Cipolletta E, Santulli G, Campanile A, Pumiglia K, Cervero P et al. (2007). Endothelial beta2 adrenergic signaling to AKT: role of Gi and SRC. Cell Signal 19: 1949–1955.

    Article  CAS  Google Scholar 

  • Cottrell GS, Amadesi S, Schmidlin F, Bunnett N . (2003). Protease-activated receptor 2: activation, signalling and function. Biochem Soc Trans 31: 1191–1197.

    Article  CAS  Google Scholar 

  • D’Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P . (2001). Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 158: 2031–2041.

    Article  Google Scholar 

  • Darmoul D, Gratio V, Devaud H, Laburthe M . (2004). Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem 279: 20927–20934.

    Article  CAS  Google Scholar 

  • Fanger GR, Johnson NL, Johnson GL . (1997). MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J 16: 4961–4972.

    Article  CAS  Google Scholar 

  • Gallagher ED, Gutowski S, Sternweis PC, Cobb MH . (2004). RhoA binds to the amino terminus of MEKK1 and regulates its kinase activity. J Biol Chem 279: 1872–1877.

    Article  CAS  Google Scholar 

  • Ge L, Shenoy SK, Lefkowitz RJ, DeFea K . (2004). Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279: 55419–55424.

    Article  CAS  Google Scholar 

  • Hjortoe GM, Petersen LC, Albrektsen T, Sorensen BB, Norby PL, Mandal SK et al. (2004). Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103: 3029–3037.

    Article  CAS  Google Scholar 

  • Huang C, Jacobson K, Schaller MD . (2004). A role for JNK-paxillin signaling in cell migration. Cell Cycle 3: 4–6.

    CAS  PubMed  Google Scholar 

  • Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K . (2003). JNK phosphorylates paxillin and regulates cell migration. Nature 424: 219–223.

    Article  CAS  Google Scholar 

  • Huang Z, Yan DP, Ge BX . (2008). JNK regulates cell migration through promotion of tyrosine phosphorylation of paxillin. Cell Signal 20: 2002–2012.

    Article  CAS  Google Scholar 

  • Kimura K, Teranishi S, Yamauchi J, Nishida T . (2008). Role of JNK-dependent serine phosphorylation of paxillin in migration of corneal epithelial cells during wound closure. Invest Ophthalmol Vis Sci 49: 125–132.

    Article  Google Scholar 

  • Kozasa T, Ye RD . (2004). Selective inhibition of G protein-mediated pathways using RGS domains. Methods Mol Biol 237: 153–167.

    CAS  PubMed  Google Scholar 

  • Liu Y, Mueller BM . (2006). Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun 344: 1263–1270.

    Article  CAS  Google Scholar 

  • Ma YC, Huang J, Ali S, Lowry W, Huang XY . (2000). Src tyrosine kinase is a novel direct effector of G proteins. Cell 102: 635–646.

    Article  CAS  Google Scholar 

  • Massi D, Naldini A, Ardinghi C, Carraro F, Franchi A, Paglierani M et al. (2005). Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Hum Pathol 36: 676–685.

    Article  CAS  Google Scholar 

  • Matej R, Mandakova P, Netikova I, Pouckova P, Olejar T . (2007). Proteinase-activated receptor-2 expression in breast cancer and the role of trypsin on growth and metabolism of breast cancer cell line MDA MB-231. Physiol Res 56: 475–484.

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yamauchi J, Itoh H . (2003). Src kinase regulates the activation of a novel FGD-1-related Cdc42 guanine nucleotide exchange factor in the signaling pathway from the endothelin A receptor to JNK. J Biol Chem 278: 29890–29900.

    Article  CAS  Google Scholar 

  • Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J . (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66: 307–314.

    Article  CAS  Google Scholar 

  • Nagao M, Kaziro Y, Itoh H . (1999). The Src family tyrosine kinase is involved in Rho-dependent activation of c-Jun N-terminal kinase by Galpha12. Oncogene 18: 4425–4434.

    Article  CAS  Google Scholar 

  • Nishibori M, Mori S, Takahashi HK . (2005). Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2-mediated proliferation of colon cancer cell. J Pharmacol Sci 97: 25–30.

    Article  CAS  Google Scholar 

  • Parsons SJ, Parsons JT . (2004). Src family kinases, key regulators of signal transduction. Oncogene 23: 7906–7909.

    Article  CAS  Google Scholar 

  • Ramachandran R, Hollenberg MD . (2008). Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 153 (Suppl 1): S263–S282.

    CAS  PubMed  Google Scholar 

  • Ruf W, Mueller BM . (2006). Thrombin generation and the pathogenesis of cancer. Sem Thromb Hemost 32 (Suppl 1): 61–68.

    Article  CAS  Google Scholar 

  • Russell M, Lange-Carter CA, Johnson GL . (1995). Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem 270: 11757–11760.

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez PE, Ramirez-Duenas MG, Albarran-Somoza B, Garcia-Iglesias T, del Toro-Arreola A, Franco-Topete R et al. (2008). Protease-activated receptor-2 (PAR-2) in cervical cancer proliferation. Gynecol Oncol 108: 19–26.

    Article  CAS  Google Scholar 

  • Sato Y, Asada Y, Marutsuka K, Hatakeyama K, Sumiyoshi A . (1996). Tissue factor induces migration of cultured aortic smooth muscle cells. Thromb Haemost 75: 389–392.

    CAS  PubMed  Google Scholar 

  • Schaller MD . (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20: 6459–6472.

    Article  CAS  Google Scholar 

  • Schaller MD, Parsons JT . (1995). pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15: 2635–2645.

    Article  CAS  Google Scholar 

  • Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM . (2004). Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2: 395–402.

    CAS  PubMed  Google Scholar 

  • Soreide K, Janssen EA, Korner H, Baak JP . (2006). Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J Pathol 209: 147–156.

    Article  CAS  Google Scholar 

  • Su SB, Motoo Y, Iovanna JL, Berthezene P, Xie MJ, Mouri H et al. (2001a). Overexpression of p8 is inversely correlated with apoptosis in pancreatic cancer. Clin Cancer Res 7: 1320–1324.

    CAS  PubMed  Google Scholar 

  • Su SB, Motoo Y, Iovanna JL, Xie MJ, Mouri H, Ohtsubo K et al. (2001b). Expression of p8 in human pancreatic cancer. Clin Cancer Res 7: 309–313.

    CAS  PubMed  Google Scholar 

  • Trejo J . (2003). Protease-activated receptors: new concepts in regulation of G protein-coupled receptor signaling and trafficking. J Pharmacol Exp Ther 307: 437–442.

    Article  CAS  Google Scholar 

  • Uusitalo-Jarvinen H, Kurokawa T, Mueller BM, Andrade-Gordon P, Friedlander M, Ruf W . (2007). Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27: 1456–1462.

    Article  CAS  Google Scholar 

  • Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B et al. (2008). Inhibition of tissue factor signaling suppresses tumor growth. Blood 111: 190–199.

    Article  CAS  Google Scholar 

  • Wang H, Wen S, Bunnett NW, Leduc R, Hollenberg MD, MacNaughton WK . (2008). Proteinase-activated receptor-2 induces cyclooxygenase-2 expression through beta-catenin and cyclic AMP-response element-binding protein. J Biol Chem 283: 809–815.

    Article  CAS  Google Scholar 

  • Wilson SR, Gallagher S, Warpeha K, Hawthorne SJ . (2004). Amplification of MMP-2 and MMP-9 production by prostate cancer cell lines via activation of protease-activated receptors. Prostate 60: 168–174.

    Article  CAS  Google Scholar 

  • Xie W, Herschman HR . (1995). v-src induces prostaglandin synthase 2 gene expression by activation of the c-Jun N-terminal kinase and the c-Jun transcription factor. J Biol Chem 270: 27622–27628.

    Article  CAS  Google Scholar 

  • Yada K, Shibata K, Matsumoto T, Ohta M, Yokoyama S, Kitano S . (2005). Protease-activated receptor-2 regulates cell proliferation and enhances cyclooxygenase-2 mRNA expression in human pancreatic cancer cells. J Surg Oncol 89: 79–85.

    Article  CAS  Google Scholar 

  • Yamauchi J, Miyamoto Y, Kokubu H, Nishii H, Okamoto M, Sugawara Y et al. (2002). Endothelin suppresses cell migration via the JNK signaling pathway in a manner dependent upon Src kinase, Rac1, and Cdc42. FEBS Lett 527: 284–288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by MOST of China (2006BAI08B02-06) (SS), Shanghai Municipal Science, Technology Commission (06DZ19728) (SS), E-institutes of Shanghai Municipal Education Commission (E 03008) (SS), NIH Grant CA093926 and HL083335 (SH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Huang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, S., Li, Y., Luo, Y. et al. Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene 28, 3047–3057 (2009). https://doi.org/10.1038/onc.2009.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.163

Keywords

This article is cited by

Search

Quick links