Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing

Abstract

Vascular dysfunction is a hallmark of many diseases, including coronary heart disease, stroke and diabetes. The underlying mechanisms of these disorders, which are intimately associated with inflammation and oxidative stress caused by excess reactive oxygen species (ROS), have remained elusive. Here we report that ROS are powerful inhibitors of vascular smooth muscle calcium-dependent Slo1 BK or Maxi-K potassium channels, an important physiological determinant of vascular tone. By targeting a cysteine residue near the Ca2+ bowl of the BK α subunit, H2O2 virtually eliminates physiological activation of the channel, with an inhibitory potency comparable to a knockout of the auxiliary subunit BK β1. These results reveal a molecular structural basis for the vascular dysfunction involving oxidative stress and provide a solid rationale for a potential use of BK openers in the prevention and treatment of cardiovascular disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of BK currents by H2O2 and MTSEA at physiological [Ca2+]i.
Figure 2: Cys911 mediates the oxidation sensitivity.
Figure 3: MTSEA disrupts Ca2+-dependent activation.
Figure 4: MTSEA selectively disrupts Ca2+ bowl function.
Figure 5: Probable molecular structure of the hSlo channel near Cys911.
Figure 6: Functional knockout of BK channels by ROS.

Similar content being viewed by others

References

  1. Anderson, R.N. & Smith, B.L. Deaths: leading causes for 2001. Natl. Vital Stat. Rep. 52, 86 (2003).

    Google Scholar 

  2. Halliwell, B. & Gutteridge, J.M.C. Free Radicals in Biology and Medicine (Oxford University Press, New York, 1999).

    Google Scholar 

  3. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  Google Scholar 

  4. Hensley, K., Robinson, K.A., Gabbita, S.P., Salsman, S. & Floyd, R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 28, 1456–1462 (2000).

    Article  CAS  Google Scholar 

  5. Clarke, R. & Armitage, J. Antioxidant vitamins and risk of cardiovascular disease. Review of large-scale randomised trials. Cardiovasc. Drugs. Ther. 16, 411–415 (2002).

    Article  CAS  Google Scholar 

  6. Fennell, J.P. et al. Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther. 9, 110–117 (2002).

    Article  CAS  Google Scholar 

  7. Nelson, M.T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995).

    Article  CAS  Google Scholar 

  8. Perez, G.J., Bonev, A.D., Patlak, J.B. & Nelson, M.T. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J. Gen. Physiol. 113, 229–238 (1999).

    Article  CAS  Google Scholar 

  9. ZhuGe, R. et al. Dynamics of signaling between Ca2+ sparks and Ca2+-activated K+ channels studied with a novel image-based method for direct intracellular measurement of ryanodine receptor Ca2+ current. J. Gen. Physiol. 116, 845–864 (2000).

    Article  CAS  Google Scholar 

  10. Lohn, M. et al. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ. Res. 89, 1051–1057 (2001).

    Article  CAS  Google Scholar 

  11. Shen, K.Z. et al. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pflügers Arch. 426, 440–445 (1994).

    Article  CAS  Google Scholar 

  12. Wang, Y.W., Ding, J.P., Xia, X.M. & Lingle, C.J. Consequences of the stoichiometry of Slo1 α and auxiliary β subunits on functional properties of large-conductance Ca2+-activated K+ channels. J. Neurosci. 22, 1550–1561 (2002).

    Article  CAS  Google Scholar 

  13. Brenner, R., Jegla, T.J., Wickenden, A., Liu, Y. & Aldrich, R.W. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461 (2000).

    Article  CAS  Google Scholar 

  14. Brenner, R. et al. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407, 870–876 (2000).

    Article  CAS  Google Scholar 

  15. Plüger, S. et al. Mice with disrupted BK channel β1 subunit gene feature abnormal Ca2+ spark/STOC coupling and elevated blood pressure. Circ. Res. 87, E53–60 (2000).

    Article  Google Scholar 

  16. Patterson, A.J., Henrie-Olson, J. & Brenner, R. Vasoregulation at the molecular level: a role for the β1 subunit of the calcium-activated potassium (BK) channel. Trends Cardiovasc. Med. 12, 78–82 (2002).

    Article  CAS  Google Scholar 

  17. Cai, H. & Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840–844 (2000).

    Article  CAS  Google Scholar 

  18. Wang, Z.W., Nara, M., Wang, Y.X. & Kotlikoff, M.I. Redox regulation of large conductance Ca2+-activated K+ channels in smooth muscle cells. J. Gen. Physiol. 110, 35–44 (1997).

    Article  CAS  Google Scholar 

  19. Brzezinska, A.K., Gebremedhin, D., Chilian, W.M., Kalyanaraman, B. & Elliott, S.J. Peroxynitrite reversibly inhibits Ca2+-activated K+ channels in rat cerebral artery smooth muscle cells. Am. J. Physiol. 278, H1883–H1890 (2000).

    CAS  Google Scholar 

  20. Tang, X.D. et al. Oxidative regulation of large conductance calcium-activated potassium channels. J. Gen. Physiol. 117, 253–274 (2001).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ. Res. 91, 1070–1076 (2002).

    Article  CAS  Google Scholar 

  22. Soto, M.A., González, C., Lissi, E., Vergara, C. & Latorre, R. Ca2+-activated K+ channel inhibition by reactive oxygen species. Am. J. Physiol. 232, C461–C471 (2002).

    Article  Google Scholar 

  23. Amberg, G.C., Bonev, A.D., Rossow, C.F., Nelson, M.T. & Santana, L.F. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J. Clin. Invest. 112, 717–724 (2003).

    Article  CAS  Google Scholar 

  24. Gilbert, D.L. & Colton, C.A. Overview of reactive oxygen species. in Reactive Oxygen Species in Biological Systems (eds. Gilbert, D.L. & Colton, C.A.) 679–695 (Plenum, New York, 1999).

    Google Scholar 

  25. Avdonin, V., Tang, X.D. & Hoshi, T. Stimulatory action of internal protons on Slo1 BK channels. Biophys. J. 84, 2969–2980 (2003).

    Article  CAS  Google Scholar 

  26. Tang, X.D. et al. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425, 531–535 (2003).

    Article  CAS  Google Scholar 

  27. Lacy, F., Gough, D.A. & Schmid-Schonbein, G.W. Role of xanthine oxidase in hydrogen peroxide production. Free Radic. Biol. Med. 25, 720–727 (1998).

    Article  CAS  Google Scholar 

  28. Dröge, W. Free radicals in the physiological control of cell function. Physiol Rev 82, 47–95. (2002).

    Article  Google Scholar 

  29. Dichiara, T.J. & Reinhart, P.H. Redox modulation of hSlo Ca2+-activated K+ channels. J. Neurosci. 17, 4942–4955 (1997).

    Article  CAS  Google Scholar 

  30. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522. (2002).

    Article  CAS  Google Scholar 

  31. Horrigan, F.T. & Aldrich, R.W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002).

    Article  CAS  Google Scholar 

  32. Magleby, K.L. Gating mechanism of BK (Slo1) channels: so near, yet so far. J. Gen. Physiol. 121, 81–96 (2003).

    Article  CAS  Google Scholar 

  33. Xia, X.M., Zeng, X. & Lingle, C.J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884 (2002).

    Article  CAS  Google Scholar 

  34. Schreiber, M. & Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355–1363 (1997).

    Article  CAS  Google Scholar 

  35. Bian, S., Favre, I. & Moczydlowski, E. Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation. Proc. Natl. Acad. Sci. USA 98, 4776–4781 (2001).

    Article  CAS  Google Scholar 

  36. Niu, X. & Magleby, K.L. Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+. Proc. Natl. Acad. Sci. USA 99, 11441–11446 (2002).

    Article  CAS  Google Scholar 

  37. Beckman, J.S. & Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424–C1437 (1996).

    Article  CAS  Google Scholar 

  38. Erxleben, C. et al. Interacting effects of N-terminal variation and strex exon splicing on slo potassium channel regulation by calcium, phosphorylation, and oxidation. J. Biol. Chem. 277, 27045–27052 (2002).

    Article  CAS  Google Scholar 

  39. Zeng, X.H., Xia, X.M. & Lingle, C.J. Redox-sensitive extracellular gates formed by auxiliary β subunits of calcium-activated potassium channels. Nat. Struct. Biol. 10, 448–454 (2003).

    Article  CAS  Google Scholar 

  40. Gribkoff, V.K. et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. 7, 471–477 (2001).

    Article  CAS  Google Scholar 

  41. Giasson, B.I., Ischiropoulos, H., Lee, V.M. & Trojanowski, J.Q. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases. Free Radic. Biol. Med. 32, 1264–1275 (2002).

    Article  CAS  Google Scholar 

  42. Kaczorowski, G.J., Knaus, H.G., Leonard, R.J., McManus, O.B. & Garcia, M.L. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28, 255–267 (1996).

    Article  CAS  Google Scholar 

  43. Cui, J. & Aldrich, R.W. Allosteric linkage between voltage and Ca2+-dependent activation of BK-type mSlo1 K+ channels. Biochemistry 39, 15612–15619. (2000).

    Article  CAS  Google Scholar 

  44. Zhang, X., Solaro, C.R. & Lingle, C.J. Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a nonselective, low affinity divalent cation site. J. Gen. Physiol. 118, 607–635 (2001).

    Article  CAS  Google Scholar 

  45. Braun, A.F. & Sy, L. Contribution of potential EF hand motifs to the calcium-dependent gating of a mouse brain large conductance, calcium-sensitive K+ channel. J. Physiol. 533, 681–695 (2001).

    Article  CAS  Google Scholar 

  46. Bao, L., Rapin, A.M., Holmstrand, E.C. & Cox, D.H. Elimination of the BKCa channel's high-affinity Ca2+ sensitivity. J. Gen. Physiol. 120, 173–189 (2002).

    Article  CAS  Google Scholar 

  47. Piskorowski, R. & Aldrich, R.W. Calcium activation of BKCa potassium channels lacking the calcium bowl and RCK domains. Nature 420, 499–502 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Ciali Santarelli for reading of the manuscript, C. Schinstock and M. Hoshi for help with mutant construction, and R. Xu and H. Daggett for cell culture. X.D.T. dedicates this paper to his grandmother who passed away in June 2003. This work was supported in part by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Hoshi.

Ethics declarations

Competing interests

M.L.G. is an employee of Merck & Co., Inc. and potentially owns stock and/or holds stock options in the company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Garcia, M., Heinemann, S. et al. Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nat Struct Mol Biol 11, 171–178 (2004). https://doi.org/10.1038/nsmb725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing