Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The DCX-domain tandems of doublecortin and doublecortin-like kinase

Abstract

The doublecortin-like domains (DCX), which typically occur in tandem, are novel microtubule-binding modules. DCX tandems are found in doublecortin, a 360-residue protein expressed in migrating neurons; the doublecortin-like kinase (DCLK); the product of the RP1 gene that is responsible for a form of inherited blindness; and several other proteins. Mutations in the gene encoding doublecortin cause lissencephaly in males and the 'double-cortex syndrome' in females. We here report a solution structure of the N-terminal DCX domain of human doublecortin and a 1.5 Å resolution crystal structure of the equivalent domain from human DCLK. Both show a stable, ubiquitin-like tertiary fold with distinct structural similarities to GTPase-binding domains. We also show that the C-terminal DCX domains of both proteins are only partially folded. In functional assays, the N-terminal DCX domain of doublecortin binds only to assembled microtubules, whereas the C-terminal domain binds to both microtubules and unpolymerized tubulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution structure of the N-terminal DCX domain of human doublecortin.
Figure 2: The crystal structure of the N-terminal DCX domain of the doublecortin-like kinase.
Figure 3: Comparison of molecular models of structurally related members of the ubiquitin superfamily.
Figure 4: Comparison of the stabilities of the isolated DCX domains and DCX tandems in doublecortin and DCLK.
Figure 5: Binding of doublecortin DCX domains to tubulin.
Figure 6: In vivo microtubule bundling by various doublecortin fragments.
Figure 7: Impact of two patient mutations on the structure and function of N-DCX.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Nogales, E. Structural insight into microtubule function. Annu. Rev. Biophys. Biomol. Struct. 30, 397–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Mandelkow, E. & Mandelkow, E.M. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol. 7, 72–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Gleeson, J.G. et al. doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. des Portes, V. et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92, 51–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Raymond, A.A. et al. Abnormalities of gyration, heterotopias, tuberous sclerosis, focal cortical dysplasia, microdysgenesis, dysembryoplastic neuroepithelial tumour and dysgenesis of the archicortex in epilepsy. Clinical, EEG and neuroimaging features in 100 adult patients. Brain 118, 629–660 (1995).

    Article  PubMed  Google Scholar 

  6. Francis, F. et al. doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Dobyns, W.B. & Truwit, C.L. Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics 26, 132–147 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Dobyns, W.B., Reiner, O., Carrozzo, R. & Ledbetter, D.H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Assoc. 270, 2838–2842 (1993).

    Article  CAS  Google Scholar 

  10. Sapir, T. et al. doublecortin mutations cluster in evolutionarily conserved functional domains. Hum. Mol. Genet. 9, 703–712 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, K.R., Holzer, A.K., Bazan, J.F., Walsh, C.A. & Gleeson, J.G. Patient mutations in doublecortin define a repeated tubulin-binding domain. J. Biol. Chem. 275, 34442–34450 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Burgess, H.A. & Reiner, O. doublecortin-like kinase is associated with microtubules in neuronal growth cones. Mol. Cell. Neurosci. 16, 529–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Burgess, H.A., Martinez, S. & Reiner, O. KIAA0369, doublecortin-like kinase, is expressed during brain development. J. Neurosci. Res. 58, 567–575 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, P.T., Gleeson, J.G., Corbo, J.C., Flanagan, L. & Walsh, C.A. DCAMKL1 encodes a protein kinase with homology to doublecortin that regulates microtubule polymerization. J. Neurosci. 20, 9152–9161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonczy, P. et al. zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. Dev. Cell 1, 363–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sullivan, L.S. et al. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat. Genet. 22, 255–259 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cierpicki, T., Kim, M.H., Otlewski, J., Derewenda, Z.S. & Bushweller, J.H. Assignment of 1H, 13C and 15N resonances of the N-terminal microtubule-binding domain of human doublecortin. J. Biomol. NMR 25, 81–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, L., Hofer, F., Martin, G.S. & Kim, S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Ito, T., Matsui, Y., Ago, T., Ota, K. & Sumimoto, H. Novel modular domain PB1 recognizes PC motif to mediate functional protein–protein interactions. EMBO J. 20, 3938–3946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terasawa, H. et al. Structure and ligand recognition of the PB1 domain: a novel protein module binding to the PC motif. EMBO J. 20, 3947–3956 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buchberger, A., Howard, M.J., Proctor, M. & Bycroft, M. The UBX domain: a widespread ubiquitin-like module. J. Mol. Biol. 307, 17–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Scheffzek, K. et al. The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast. Structure 9, 1043–1050 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Semisotnov, G.V. et al. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119–128 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Itzhaki, L.S., Evans, P.A., Dobson, C.M. & Radford, S.E. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry 33, 5212–5220 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Engelhard, M. & Evans, P.A. Kinetics of interaction of partially folded proteins with a hydrophobic dye: evidence that molten globule character is maximal in early folding intermediates. Protein Sci. 4, 1553–1562 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eliezer, D. & Wright, P.E. Is apomyoglobin a molten globule? Structural characterization by NMR. J. Mol. Biol. 263, 531–538 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Kitahara, R., Yamada, H., Akasaka, K. & Wright, P.E. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded. J. Mol. Biol. 320, 311–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Horesh, D. et al. doublecortin, a stabilizer of microtubules. Hum. Mol. Genet. 8, 1599–1610 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Yoshiura, K., Noda, Y., Kinoshita, A. & Niikawa, N. Colocalization of doublecortin with the microtubules: an ex vivo colocalization study of mutant doublecortin. J. Neurobiol. 43, 132–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Fygenson, D.K., Flyvbjerg, H., Sneppen, K. & Libchaber, A. Spontaneous nucleation of microtubules. Phys. Rev. E 51, 5058–5063 (1995).

    Article  CAS  Google Scholar 

  35. Fygenson, D.K., Braun, E. & Libchaber, A. Phase diagram of microtubules. Phys. Rev. E 50, 1579–1588 (1994).

    Article  CAS  Google Scholar 

  36. Krawczak, M. & Cooper, D.N. The human gene mutation database. Trends Genet. 13, 121–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of 'parallel' expression vectors. Protein Expr. Purif. 15, 34–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, W. & Malcolm, B.A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis. Biotechniques 26, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Delaglio, F., Kontaxis, G. & Bax, A. Protein structure determination using molecular replacement and NMR dipolar couplings. J. Am. Chem. Soc. 122, 2142–2143 (2000).

    Article  CAS  Google Scholar 

  40. Goddard, T.D. & Kneller, D.G. SPARKY 3 (University of California, San Francisco; 2002).

  41. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Nilges, M., Macias, M.J., O'Donoghue, S.I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, M.H., Derewenda, U., Devedjiev, Y., Dauter, Z. & Derewenda, Z.S. Purification and crystallization of the N-terminal domain from the human doublecortin-like kinase. Acta Crystallogr. D 59, 502–505 (2003).

    Article  PubMed  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Sheldrick, G.M. & Gould, R.O. Structure solution by iterative peaklist optimisation and tangent expansion in space group P1. Acta Crystallogr. B 51, 423–431 (1995).

    Article  Google Scholar 

  48. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  49. Fortelle, E.D.L. & Bricogne, G. Maximum-likelihood heavy atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  50. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Navaza, J. AMoRE: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  54. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 282–291 (1993).

    Article  Google Scholar 

  55. Santoro, M.M. & Bolen, D.W. A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31, 4901–4907 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by NIH grants to Z.S.D. and to C.A.W. A NATO Collaborative Link grant to Z.S.D. and J.O. is gratefully acknowledged. T.C. and D.K. are recipients of the Young Scholar Awards from the Foundation for Polish Science. J.O. is an International Scholar of the Howard Hughes Medical Institute. J.H.B. is supported by grants from the NIH and the Leukemia and Lymphoma Society. We thank N. Olekhnovich for excellent technical assistance, F. Abildgaard of NMRFAM for assistance with the collection of some of the NMR data, P. Sheffield for his contribution in the early phase of the project, A.V. Somlyo for helpful comments on the manuscript and L. Tamm for assistance with the tubulin polymerization experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John H. Bushweller or Zygmunt S. Derewenda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Cierpicki, T., Derewenda, U. et al. The DCX-domain tandems of doublecortin and doublecortin-like kinase. Nat Struct Mol Biol 10, 324–333 (2003). https://doi.org/10.1038/nsb918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing