Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Methotrexate—how does it really work?

Abstract

Methotrexate remains a cornerstone in the treatment of rheumatoid arthritis and other rheumatic diseases. Folate antagonism is known to contribute to the antiproliferative effects that are important in the action of methotrexate against malignant diseases, but concomitant administration of folic or folinic acid does not diminish the anti-inflammatory potential of this agent, which suggests that other mechanisms of action might be operative. Although no single mechanism is sufficient to account for all the anti-inflammatory activities of methotrexate, the release of adenosine from cells has been demonstrated both in vitro and in vivo. Methotrexate might also confer anti-inflammatory properties through the inhibition of polyamines. The biological effects on inflammation associated with adenosine release have provided insight into how methotrexate exerts its effects against inflammatory diseases and at the same time causes some of its well-known adverse effects. These activities contribute to the complex and multifaceted mechanisms that make methotrexate efficacious in the treatment of inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed mechanisms of the anti-inflammatory actions of methotrexate.

Similar content being viewed by others

References

  1. Afane, M. et al. Discrepancy between 3H-thymidine uptake and cell cycle studies in stimulated lymphocyte cultures treated with methotrexate. Clin. Exp. Rheumatol. 7, 603–608 (1989).

    CAS  PubMed  Google Scholar 

  2. van Ede, A. E. et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 44, 1515–1524 (2001).

    Article  CAS  Google Scholar 

  3. Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev. 57, 163–172 (2005).

    Article  CAS  Google Scholar 

  4. Khanna, D. et al. Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum. 52, 3030–3038 (2005).

    Article  CAS  Google Scholar 

  5. Dervieux, T. et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann. Rheum. Dis. 64, 1180–1185 (2005).

    Article  CAS  Google Scholar 

  6. Genestier, L. et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Invest. 102, 322–328 (1998).

    Article  CAS  Google Scholar 

  7. Olsen, N. J. & Murray, L. M. Antiproliferative effects of methotrexate on peripheral blood mononuclear cells. Arthritis Rheum. 32, 378–385 (1989).

    Article  CAS  Google Scholar 

  8. Nesher, G., Moore, T. L. & Dorner, R. W. In vitro effects of methotrexate on peripheral blood monocytes: modulation by folinic acid and S-adenosylmethionine. Ann. Rheum. Dis. 50, 637–641 (1991).

    Article  CAS  Google Scholar 

  9. Morabito, L. et al. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J. Clin. Invest. 101, 295–300 (1998).

    Article  CAS  Google Scholar 

  10. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  Google Scholar 

  11. Peachell, P. T., Columbo, M., Kagey-Sobotka, A., Lichtenstein, L. M. & Marone, G. Adenosine potentiates mediator release from human lung mast cells. Am. Rev. Respir. Dis. 138, 1143–1151 (1988).

    Article  CAS  Google Scholar 

  12. Green, P. G., Basbaum, A. I., Helms, C. & Levine, J. D. Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc. Natl Acad. Sci. USA 88, 4162–4165 (1991).

    Article  CAS  Google Scholar 

  13. Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Invest. 92, 2675–2682 (1993).

    Article  CAS  Google Scholar 

  14. Riksen, N. P. et al. Methotrexate modulates the kinetics of adenosine in humans in vivo. Ann. Rheum. Dis. 65, 465–470 (2006).

    Article  CAS  Google Scholar 

  15. Dolezalova, P., Krijt, J., Chladek, J., Nemcova, D. & Hoza, J. Adenosine and methotrexate polyglutamate concentrations in patients with juvenile arthritis. Rheumatology (Oxford) 44, 74–79 (2005).

    Article  CAS  Google Scholar 

  16. Cronstein, B. N., Kramer, S. B., Weissmann, G. & Hirschhorn, R. Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 158, 1160–1177 (1983).

    Article  CAS  Google Scholar 

  17. Cronstein, B. N. et al. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J. Immunology 148, 2201–2206 (1992).

    CAS  Google Scholar 

  18. Wakai, A. et al. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation. Shock 15, 297–301 (2001).

    Article  CAS  Google Scholar 

  19. Lennon, P. F., Taylor, C. T., Stahl, G. L. & Colgan, S. P. Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J. Exp. Med. 188, 1433–1443 (1998).

    Article  CAS  Google Scholar 

  20. Alarcon, G. S. et al. Suppression of rheumatoid factor production by methotrexate in patients with rheumatoid arthritis. Evidence for differential influences of therapy and clinical status on IgM and IgA rheumatoid factor expression. Arthritis Rheum. 33, 1156–1161 (1990).

    Article  CAS  Google Scholar 

  21. Williams, A. S., Punn, Y. L., Amos, N., Cooper, A. M. & Williams, B. D. The effect of liposomally conjugated methotrexate upon mediator release from human peripheral blood monocytes. Br. J. Rheumatol. 34, 241–245 (1995).

    Article  CAS  Google Scholar 

  22. Neurath, M. F. et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin. Exp. Immunol. 115, 42–55 (1999).

    Article  CAS  Google Scholar 

  23. Dolhain, R. J. et al. Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Br. J. Rheumatol. 37, 502–508 (1998).

    Article  CAS  Google Scholar 

  24. Seitz, M. et al. Methotrexate action in rheumatoid arthritis: stimulation of cytokine inhibitor and inhibition of chemokine production by peripheral blood mononuclear cells. Br. J. Rheumatol. 34, 602–609 (1995).

    Article  CAS  Google Scholar 

  25. DiMartino, M. J., Johnson, W. J., Votta, B. & Hanna, N. Effect of antiarthritic drugs on the enhanced interleukin-1 (IL-1) production by macrophages from adjuvant-induced arthritic (AA) rats. Agents Actions 21, 348–350 (1987).

    Article  CAS  Google Scholar 

  26. Segal, R., Mozes, E., Yaron, M. & Tartakovsky, B. The effects of methotrexate on the production and activity of interleukin-1. Arthritis Rheum. 32, 370–377 (1989).

    Article  CAS  Google Scholar 

  27. Thomas, R. & Carroll, G. J. Reduction of leukocyte and interleukin-1 beta concentrations in the synovial fluid of rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum. 36, 1244–1252 (1993).

    Article  CAS  Google Scholar 

  28. Sperling, R. I. et al. Inhibition of leukotriene B4 synthesis in neutrophils from patients with rheumatoid arthritis by a single oral dose of methotrexate. Arthritis Rheum. 33, 1149–1155 (1990).

    Article  CAS  Google Scholar 

  29. Kremer, J. M., Galivan, J., Streckfuss, A. & Kamen, B. Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients. Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum. 29, 832–835 (1986).

    Article  CAS  Google Scholar 

  30. Puig, J. G. & Fox, I. H. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate. J. Clin. Invest. 74, 936–941 (1984).

    Article  CAS  Google Scholar 

  31. Montesinos, M. C. et al. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am. J. Pathol. 160, 2009–2018 (2002).

    Article  CAS  Google Scholar 

  32. Chan, E. S. et al. Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br. J. Pharmacol. 148, 1144–1155 (2006).

    Article  CAS  Google Scholar 

  33. Klatsky, A. L., Armstrong, M. A. & Friedman, G. D. Coffee, tea, and mortality. Ann. Epidemiol. 3, 375–381 (1993).

    Article  CAS  Google Scholar 

  34. Nesher, G., Mates, M. & Zevin, S. Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum. 48, 571–572 (2003).

    Article  Google Scholar 

  35. Merrill, J. T. et al. Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum. 40, 1308–1315 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. L. Chan.

Ethics declarations

Competing interests

Edwin S. L. Chan and Bruce N. Cronstein both declare that they hold patents pertinent to King Pharmaceuticals (on use of adenosine A2A receptor agonists to promote wound healing and use of A2A receptor antagonists to inhibit fibrosis; on the use of adenosine A1 receptor antagonists to treat osteoporosis and other diseases of bone; on the use of adenosine A1 and A2B receptor antagonists to treat fatty liver; and on the use of adenosine A2A receptor agonists to prevent prosthesis loosening). Bruce N. Cronstein declares that he has acted as a consultant for Cephalon, Cypress Bioscience, King Pharmaceuticals, CanFite Biopharma, Bristol-Myers Squibb, Cellzome, Takeda Pharmaceuticals, Prometheus Laboratories, Regeneron (Westat, DSMB), Sepracor, Amgen, Endocyte, Protalex, Allos, Combinatorx, Kyowa Hakka, Hoffman La Roche, Savient and Avidimer Therapeutics. Bruce N. Cronstein also declares he has stock in CanFite Biopharma, and has received grant or research support from King Pharmaceuticals, NIH and The Vilcek Foundation (of which he is a Board Member).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, E., Cronstein, B. Methotrexate—how does it really work?. Nat Rev Rheumatol 6, 175–178 (2010). https://doi.org/10.1038/nrrheum.2010.5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing