Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of mechanotransduction in mammalian sensory neurons

Key Points

  • Mechanotransduction, the conversion of a mechanical stimulus into a biological response, constitutes the basis of fundamental physiological processes, including the senses of touch and pain.

  • In mammals, detection of mechanical forces by the somatosensory system is performed by primary afferent neurons that project long axons to the skin and to deeper body structures. Cutaneous mechanoreceptors are specialized to detect a wide range of mechanical stimuli including light brush of the skin, texture, vibration, touch and noxious pressure.

  • The ability of these mechanoreceptors to detect mechanical cues relies on the presence of mechanosensitive channels on the sensory nerve endings that rapidly transform mechanical forces into electrical signals.

  • Although it has been remarkably difficult to characterize mechanotranducer channels at the molecular level, recent studies have provided insights into the basic properties and molecular identities of mechanosensitive channels in mammalian sensory neurons.

  • Such analyses suggest that mechanical stimulation activates cation channels that differ in their sensitivity to pressure and desensitization rates, and that may define different classes of mechanotransducer channels.

  • Although the molecular characterization of mechanosensitive channels remains uncertain, recent studies suggest that transient receptor potential cation channel ankyrin1 (TRPA1) as well as piezo proteins contribute to the mechanotranducer apparatus in mammalian sensory neurons.

  • Molecular identification of transducer channels will undoubtedly accelerate our understanding of mechanotransduction in mammals and of its impairments in disease and post-traumatic states.

Abstract

The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cutaneous somatosensory receptors in mammals.
Figure 2: Properties of mechanotransducer currents in sensory neurons.
Figure 3: Mechanisms of mechanotransducer current desensitization.
Figure 4: Mechanotransducer currents encode biologically relevant parameters of mechanical stimuli.
Figure 5: Piezo proteins contribute to mechanotransducer currents.

Similar content being viewed by others

References

  1. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002). This study describes the structural rearrangements that underlie gating of the large prokaryotic mechanosensitive channel (MscL) using electron paramagnetic resonance spectroscopy and site-directed spin labelling.

    Article  CAS  PubMed  Google Scholar 

  3. Perozo, E. Gating prokaryotic mechanosensitive channels. Nature Rev. Mol. Cell Biol. 7, 109–119 (2006).

    Article  CAS  Google Scholar 

  4. Kung, C. A possible unifying principle for mechanosensation. Nature. 436, 647–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Vasquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K. & Perozo, E. A structural mechanism for MscS gating in lipid bilayers. Science. 321, 1210–1214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belmonte, C. & Viana, F. Molecular and cellular limits to somatosensory specificity. Mol. Pain 4, 14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lumpkin, E. A. & Caterina, M. J. Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Schwander, M., Kachar, B. & Muller, U. Review series: The cell biology of hearing. J. Cell Biol. 190, 9–20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillespie, P. G. & Muller, U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 139, 33–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fettiplace, R. Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch. 458, 1115–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petit, C. & Richardson, G. P. Linking genes underlying deafness to hair-bundle development and function. Nature Neurosci. 12, 703–710 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Vollrath, M. A., Kwan, K. Y. & Corey, D. P. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci. 30, 339–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewin, G. R. & Moshourab, R. Mechanosensation and pain. J. Neurobiol. 61, 30–44 (2004).

    Article  PubMed  Google Scholar 

  15. Tsunozaki, M. & Bautista, D. M. Mammalian somatosensory mechanotransduction. Curr. Opin. Neurobiol. 19, 362–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Chalfie, M. Neurosensory mechanotransduction. Nature Rev. Mol. Cell Biol. 10, 44–52 (2009).

    Article  CAS  Google Scholar 

  17. Swerup, C. & Rydqvist, B. The abdominal stretch receptor organ of the crayfish. Comp. Biochem. Physiol. A 103, 423–431 (1992).

    Article  Google Scholar 

  18. Christensen, A. P. & Corey, D. P. TRP channels in mechanosensation: direct or indirect activation? Nature Rev. Neurosci. 8, 510–521 (2007).

    Article  CAS  Google Scholar 

  19. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Arnadottir, J. & Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Goodman, M. B. in WormBook [online] (2006).

    Google Scholar 

  22. Lumpkin, E. A., Marshall, K. L. & Nelson, A. M. The cell biology of touch. J. Cell Biol. 191, 237–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iggo, A. & Andres, K. H. Morphology of cutaneous receptors. Annu. Rev. Neurosci. 5, 1–31 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Munger, B. L. & Ide, C. The structure and function of cutaneous sensory receptors. Arch. Histol. Cytol. 51, 1–34 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Brown, A. G. & Iggo, A. A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J. Physiol. 193, 707–733 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson, K. O. The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Srinivasan, M. A., Whitehouse, J. M. & LaMotte, R. H. Tactile detection of slip: surface microgeometry and peripheral neural codes. J. Neurophysiol. 63, 1323–1332 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. LaMotte, R. H. & Mountcastle, V. B. Capacities of humans and monkeys to discriminate vibratory stimuli of different frequency and amplitude: a correlation between neural events and psychological measurements. J. Neurophysiol. 38, 539–559 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Hunt, C. C. & Mc, I. A. An analysis of fibre diameter and receptor characteristics of myelinated cutaneous afferent fibres in cat. J. Physiol. 153, 99–112 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brisben, A. J., Hsiao, S. S. & Johnson, K. O. Detection of vibration transmitted through an object grasped in the hand. J. Neurophysiol. 81, 1548–1558 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Iggo, A. & Muir, A. R. The structure and function of a slowly adapting touch corpuscle in hairy skin. J. Physiol. 200, 763–796 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blake, D. T., Hsiao, S. S. & Johnson, K. O. Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 17, 7480–7489 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson, K. O., Yoshioka, T. & Vega-Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17, 539–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Woodbury, C. J. & Koerber, H. R. Central and peripheral anatomy of slowly adapting type I low-threshold mechanoreceptors innervating trunk skin of neonatal mice. J. Comp. Neurol. 505, 547–561 (2007).

    Article  PubMed  Google Scholar 

  35. Iggo, A. in Touch, Heat and Pain. (eds de Reuk, A. V. S. & Knight, J.) 237–260 (Little Brown and Company, Boston, 1966).

    Google Scholar 

  36. Chambers, M. R., Andres, K. H., von Duering, M. & Iggo, A. The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q. J. Exp. Physiol. Cogn. Med. Sci. 57, 417–445 (1972).

    CAS  PubMed  Google Scholar 

  37. Iggo, A. & Kornhuber, H. H. A quantitative study of C-mechanoreceptors in hairy skin of the cat. J. Physiol. 271, 549–565 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vallbo, A. B., Olausson, H. & Wessberg, J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81, 2753–2763 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neurosci. 5, 900–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Loken, L. S., Wessberg, J., Morrison, I., McGlone, F. & Olausson, H. Coding of pleasant touch by unmyelinated afferents in humans. Nature Neurosci. 12, 547–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Seal, R. P. et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462, 651–655 (2009). This study identified the key part played by a population of unmyelinated, low-threshold mechanoreceptors in the mechanical hypersensitivity caused by injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perl, E. R. Cutaneous polymodal receptors: characteristics and plasticity. Prog. Brain Res. 113, 21–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. McCarter, G. C., Reichling, D. B. & Levine, J. D. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 21, 531–543 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl Acad. Sci. USA 93, 15435–15439 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell. 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, J. & Lewin, G. R. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. 577, 815–828 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sachs, F. Stretch-activated ion channels: what are they? Physiology (Bethesda) 25, 50–56 (2010).

    CAS  Google Scholar 

  50. Hu, J., Chiang, L. Y., Koch, M. & Lewin, G. R. Evidence for a protein tether involved in somatic touch. EMBO J. 29, 855–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hao, J. & Delmas, P. Multiple desensitization mechanisms of mechanotransducer channels shape firing of mechanosensory neurons. J. Neurosci. 30, 13384–13395 (2010). A detailed investigation of the desensitization mechanisms of mechanotransducer channels in rat sensory neurons that mediate the senses of touch and pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drew, L. J. et al. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J. Physiol. 556, 691–710 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rugiero, F., Drew, L. J. & Wood, J. N. Kinetic properties of mechanically activated currents in spinal sensory neurons. J. Physiol. 588, 301–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Drew, L. J., Wood, J. N. & Cesare, P. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J. Neurosci. 22, RC228 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Drew, L. J. & Wood, J. N. FM1-43 is a permeant blocker of mechanosensitive ion channels in sensory neurons and inhibits behavioural responses to mechanical stimuli. Mol. Pain. 3, 1 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coste, B., Crest, M. & Delmas, P. Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J. Gen. Physiol. 129, 57–77 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhattacharya, M. R. et al. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc. Natl Acad. Sci. USA 105, 20015–20020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stucky, C. L. & Lewin, G. R. Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J. Neurosci. 19, 6497–6505 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fang, X., McMullan, S., Lawson, S. N. & Djouhri, L. Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J. Physiol. 565, 927–943 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wood, J. N. et al. Ion channel activities implicated in pathological pain. Novartis Found. Symp. 261, 32–40; discussion 40–54 (2004).

    CAS  PubMed  Google Scholar 

  61. Vilceanu, D. & Stucky, C. L. TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One. 5, e12177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mendelson, M. & Lowenstein, W. R. Mechanisms of Receptor Adaptation. Science 144, 554–555 (1964). This study was a pioneering work that established the role of the laminar capsule as a mechanical filter in the adaptation properties of the Pacinian corpuscle.

    Article  CAS  PubMed  Google Scholar 

  63. Loewenstein, W. R. & Mendelson, M. Components of Receptor Adaptation in a Pacinian Corpuscle. J. Physiol. 177, 377–397 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McCarter, G. C. & Levine, J. D. Ionic basis of a mechanotransduction current in adult rat dorsal root ganglion neurons. Mol. Pain 2, 28 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drew, L. J. & Wood, J. N. Worm sensation! Mol. Pain 1, 8 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin, S. Y. & Corey, D. P. TRP channels in mechanosensation. Curr. Opin. Neurobiol. 15, 350–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Hoger, U., Torkkeli, P. H., Seyfarth, E. A. & French, A. S. Ionic selectivity of mechanically activated channels in spider mechanoreceptor neurons. J. Neurophysiol. 78, 2079–2085 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Hamill, O. P. & McBride, D. W. Jr. The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996).

    CAS  PubMed  Google Scholar 

  69. Gale, J. E., Marcotti, W., Kennedy, H. J., Kros, C. J. & Richardson, G. P. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J. Neurosci. 21, 7013–7025 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meyers, J. R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drew, L. J. et al. High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One. 2, e515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Kamaraju, K., Gottlieb, P. A., Sachs, F. & Sukharev, S. Effects of GsMTx4 on bacterial mechanosensitive channels in inside-out patches from giant spheroplasts. Biophys. J. 99, 2870–2878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Park, S. P. et al. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 137, 208–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Crawford, A. C., Evans, M. G. & Fettiplace, R. Activation and adaptation of transducer currents in turtle hair cells. J. Physiol. 419, 405–434 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ricci, A. J., Wu, Y. C. & Fettiplace, R. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J. Neurosci. 18, 8261–8277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kang, L., Gao, J., Schafer, W. R., Xie, Z. & Xu, X. Z. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 67, 381–391 (2010). The authors demonstrated that TRP4, a TRPN subfamily channel, functions as a pore-forming subunit of native mechanotransducer channels in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Assad, J. A., Hacohen, N. & Corey, D. P. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc. Natl Acad. Sci. USA 86, 2918–2922 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Crawford, A. C., Evans, M. G. & Fettiplace, R. The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J. Physiol. 434, 369–398 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hacohen, N., Assad, J. A., Smith, W. J. & Corey, D. P. Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J. Neurosci. 9, 3988–3997 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Akitake, B., Anishkin, A. & Sukharev, S. The “dashpot” mechanism of stretch-dependent gating in MscS. J. Gen. Physiol. 125, 143–154 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gustin, M. C., Zhou, X. L., Martinac, B. & Kung, C. A mechanosensitive ion channel in the yeast plasma membrane. Science 242, 762–765 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Suchyna, T. M. et al. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Hamill, O. P. Twenty odd years of stretch-sensitive channels. Pflugers Arch. 453, 333–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Hamill, O. P. & McBride, D. W. Jr. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl Acad. Sci. USA 89, 7462–7466 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haeberle, H. & Lumpkin, E. A. Merkel Cells in Somatosensation. Chemosens. Percept. 1, 110–118 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Usoskin, D. et al. En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proc. Natl Acad. Sci. USA 107, 16336–16341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Waldmann, R. & Lazdunski, M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr. Opin. Neurobiol. 8, 418–424 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Lingueglia, E. Acid-sensing ion channels in sensory perception. J. Biol. Chem. 282, 17325–17329 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Garcia-Anoveros, J., Samad, T. A., Zuvela-Jelaska, L., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678–2686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Hughes, P. A., B. S., Young, R. L., Blackshaw, L. A. Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J. Comp. Neurol. 500, 863–875 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Page, A. J. et al. The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 127, 1739–1747 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Page, A. J. et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54, 1408–1415 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roza, C. et al. Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J. Physiol. 558, 659–669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, Y. et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64, 885–897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mogil, J. S. et al. Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J. Neurosci. 25, 9893–9901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lechner, S. G., Frenzel, H., Wang, R. & Lewin, G. R. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J. 28, 1479–1491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nilius, B., Owsianik, G., Voets, T. & Peters, J. A. Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Damann, N., Voets, T. & Nilius, B. TRPs in our senses. Curr. Biol. 18, R880–R889 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA 101, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Liedtke, W. TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J. Physiol. 567, 53–58 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl Acad. Sci. USA 100, 13698–13703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Alessandri-Haber, N., Dina, O. A., Joseph, E. K., Reichling, D. & Levine, J. D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci. 26, 3864–3874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alessandri-Haber, N. et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci. 24, 4444–4452 (2004).

    Article  CAS  Google Scholar 

  111. Alessandri-Haber, N., Joseph, E., Dina, O. A., Liedtke, W. & Levine, J. D. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118, 70–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000). This study identified TRPV4 as a cation channel that is gated by exposure to hypotonicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng, L. E., Song, W., Looger, L. L., Jan, L. Y. & Jan, Y. N. The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373–380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gopfert, M. C., Albert, J. T., Nadrowski, B. & Kamikouchi, A. Specification of auditory sensitivity by Drosophila TRP channels. Nature Neurosci. 9, 999–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Li, W., Feng, Z., Sternberg, P. W. & Xu, X. Z. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684–687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301, 96–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000). This paper described the identification of the no mechanoreceptor potential C (NOMPC) channel as an essential component of the mechanosensory transduction apparatus in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  119. Corey, D. P. What is the hair cell transduction channel? J. Physiol. 576, 23–28 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Nagata, K., Duggan, A., Kumar, G. & Garcia-Anoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25, 4052–4061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Rugiero, F. & Wood, J. N. The mechanosensitive cell line ND-C does not express functional thermoTRP channels. Neuropharmacology 56, 1138–1146 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Kindt, K. S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nature neurosci. 10, 568–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Bautista, D. M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248–12252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kwan, K. Y., Glazer, J. M., Corey, D. P., Rice, F. L. & Stucky, C. L. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J. Neurosci. 29, 4808–4819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brierley, S. M. et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137, 2084–2095 e2083 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010). The authors characterized two novel proteins, piezo 1 and piezo 2, as essential components of mechanically activated cation channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Satoh, K. et al. A novel membrane protein, encoded by the gene covering KIAA0233, is transcriptionally induced in senile plaque-associated astrocytes. Brain Res. 1108, 19–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. McHugh, B. J. et al. Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J. Cell Sci. 123, 51–61 (2010).

    Article  PubMed  Google Scholar 

  133. Goodman, M. B. et al. MEC-2 regulates, C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Brown, A. L., Liao, Z. & Goodman, M. B. MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J. Gen. Physiol. 131, 605–616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in, C. elegans. Nature 378, 292–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Martinez-Salgado, C. et al. Stomatin and sensory neuron mechanotransduction. J. Neurophysiol. 98, 3802–3808 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Honore, E. The neuronal background K2P channels: focus on TREK1. Nature Rev. Neurosci. 8, 251–261 (2007).

    Article  CAS  Google Scholar 

  139. Maingret, F. et al. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483–2491 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Medhurst, A. D. et al. Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res. Mol. Brain Res. 86, 101–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Maingret, F., Fosset, M., Lesage, F., Lazdunski, M. & Honore, E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 274, 1381–1387 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Bang, H., Kim, Y. & Kim, D. TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem. 275, 17412–17419 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Kang, D. & Kim, D. TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am. J. Physiol. Cell Physiol. 291, C138–C146 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Noel, J. et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dobler, T. et al. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. 585, 867–879 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lennertz, R. C., Tsunozaki, M., Bautista, D. M. & Stucky, C. L. Physiological basis of tingling paresthesia evoked by hydroxy-alpha-sanshool. J. Neurosci. 30, 4353–4361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bautista, D. M. et al. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nature Neurosci. 11, 772–779 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Kleggetveit, I. P. & Jorum, E. Large and small fiber dysfunction in peripheral nerve injuries with or without spontaneous pain. J. Pain 12, 1305–1310 (2010).

    Article  Google Scholar 

  150. Devor, M. & Wall, P. D. Type of sensory nerve fibre sprouting to form a neuroma. Nature 262, 705–708 (1976).

    Article  CAS  PubMed  Google Scholar 

  151. Amir, R. & Devor, M. Ongoing activity in neuroma afferents bearing retrograde sprouts. Brain Res. 630, 283–288 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Michaelis, M., Blenk, K. H., Vogel, C. & Janig, W. Distribution of sensory properties among axotomized cutaneous C-fibres in adult rats. Neuroscience 94, 7–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Sato, J. & Perl, E. R. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 251, 1608–1610 (1991).

    Article  CAS  PubMed  Google Scholar 

  154. Ma, C., Greenquist, K. W. & Lamotte, R. H. Inflammatory mediators enhance the excitability of chronically compressed dorsal root ganglion neurons. J. Neurophysiol. 95, 2098–2107 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Howe, J. F., Loeser, J. D. & Calvin, W. H. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 3, 25–41 (1977).

    Article  CAS  PubMed  Google Scholar 

  156. Shim, B. et al. Mechanical and heat sensitization of cutaneous nociceptors in rats with experimental peripheral neuropathy. Neuroscience 132, 193–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Campbell, J. N., Raja, S. N., Meyer, R. A. & Mackinnon, S. E. Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32, 89–94 (1988).

    Article  CAS  PubMed  Google Scholar 

  158. Giamarchi, A. et al. A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J. 29, 1176–1191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Cheng, C. M. et al. Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology. Nature Protoc. 5, 714–724 (2010).

    Article  CAS  Google Scholar 

  161. Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of, E. coli activated by amphipaths. Nature 348, 261–263 (1990). The authors showed that amphipathic molecules can activate mechanosensitive channels of giant Escherichia coli spheroplasts, with effectiveness proportional to their lipid solubility, suggesting that mechanical force is transferred to the channel through the lipid bilayer.

    Article  CAS  PubMed  Google Scholar 

  162. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691–26696 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Sniadecki, N. J. A tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology 151, 451–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Sato, M. Response of Pacinian corpuscles to sinusoidal vibration. J. Physiol. 159, 391–409 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Maricich, S. M. et al. Merkel cells are essential for light-touch responses. Science 324, 1580–1582 (2009). The authors showed loss of type I slowly adapting (SAI) responses normally mediated by Merkel cell–neurite complexes in Atoh1CKO animals, suggesting that Merkel cells are indispensable for the normal neurophysiological SAI response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Haeberle, H. et al. Molecular profiling reveals synaptic release machinery in Merkel cells. Proc. Natl Acad. Sci. USA 101, 14503–14508 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pawson, L., Pack, A. K. & Bolanowski, S. J. Possible glutaminergic interaction between the capsule and neurite of Pacinian corpuscles. Somatosens. Mot. Res. 24, 85–95 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The data adapted to create the model in Figure 5a and the piezo recordings in figure 5d are kindly provided by B. Coste and A. Patapoutian. This study was supported by the Centre National de la Recherche Scientifique (CNRS) and by grants from the Agence Nationale de la Recherche, Fondation Schlumberger, ARCInca-2006, Institut UPSA de la Douleur, Institut pour la Recherche sur la Moelle Épinière et l'Encéphale (IRME) and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Delmas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Patrick Delmas's homepage

Glossary

Mechanoreceptor

A sensory receptor that responds to mechanical pressure or distortion by causing membrane depolarization and action potential firing.

Mechanotransducer channel

An ion channel present in the cell membranes of prokaryotes and eukaryotes, capable of generating an ion flux signal as a response to mechanical stimuli.

Desensitization

The loss of responsiveness to the continuing presence of a stimulus.

A-fibre

An afferent myelinated fibre of large (Aβ) or medium (Aδ) diameter.

C-fibre

An afferent unmyelinated fibre of small diameter conveying input signals with a slow conduction velocity.

Neurite

Any projection from the cell body of a neuron, which can be either an axon or a dendrite.

Latency

The delay between a stimulus and the response it triggers.

Half-activation midpoint

The intensity of a stimulus that induces a half-maximal response.

Reversal potential

The membrane potential at which the net ion current flow becomes zero.

Randall–Selitto test

A technique for the measurement of pain response in animals by observing the reaction to gradually increasing pressure on a paw.

Von Frey hairs

A range of filaments of varying diameters that are used to exert a calibrated pressure on an animal's paw.

Allodynia

Pain due to a stimulus that does not normally provoke pain.

Inactivation

The process by which and ion channel enters a refractory state following activation. Reactivation to the conductive state cannot occur until inactivation is removed.

Baroreceptor

A type of mechanoreceptor that detects the pressure of blood flowing past and sends messages to the CNS.

Hyperalgesia

A heightened sensitivity to a painful stimulus.

Chordotonal ciliary tips

Sensory cilia of stretch receptor organs in insects and other arthropods.

Crenation

Cell shrinkage after exposure to a hypertonic solution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12, 139–153 (2011). https://doi.org/10.1038/nrn2993

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing