Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tickets to ride: selecting cargo for clathrin-regulated internalization

Key Points

  • Endocytosis dynamically regulates the composition of the plasma membrane in eukaryotic cells by moving transmembrane proteins, bound ligands and membrane lipids off the surface. Clathrin-coated vesicles are a major type of carrier for the transport of internalized cargoes, although there are several other clathrin-independent uptake pathways that operate in parallel at the cell surface.

  • Clathrin-mediated uptake of surface transmembrane cargo proteins can be constitutive or temporally regulated, depending on ligand binding or activation.

  • Packaging into clathrin-coated vesicles forming at the cell surface requires a positive sorting signal in the cytosolic domain of the cargo molecule. Regulated endocytosis often involves addition of a reversible post-translational sorting tag.

  • There is an array of structurally distinct sorting signals that are decoded by different cytosolic adaptor proteins. The heterotetrameric AP-2 adaptor complex recognizes some types of cargo, whereas monomeric clathrin-associated sorting proteins (CLASPs) sort other signals into assembling vesicles.

  • CLASPs typically bind to lipids and to AP-2 and clathrin, which operate as organizational interaction nodes during vesicle assembly and budding. It is possible that segregated cargo-selective clathrin-coated structures might assemble at the cell surface, sorting transmembrane cargo into the cell in parallel but with different endosomal fates.

Abstract

Clathrin-mediated endocytosis oversees the constitutive packaging of selected membrane cargoes into transport vesicles that fuse with early endosomes. The process is responsive to activation of signalling receptors and ion channels, promptly clearing post-translationally tagged forms of cargo off the plasma membrane. To accommodate the diverse array of transmembrane proteins that are variably gathered into forming vesicles, a dedicated sorting machinery cooperates to ensure that non-competitive uptake from the cell surface occurs within minutes. Recent structural and functional data reveal remarkable plasticity in how disparate sorting signals are recognized by cargo-selective clathrin adaptors, such as AP-2. Cargo loading also seems to govern whether coats ultimately bud or dismantle abortively at the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modular sorting codes.
Figure 2: Structural basis for cargo recognition.
Figure 3: Clathrin-coated structures at the cell surface.
Figure 4: The endocytic clathrin sorting interactome.

Similar content being viewed by others

References

  1. Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Maldonado-Baez, L. & Wendland, B. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol. 16, 505–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Leon, S. & Haguenauer-Tsapis, R. Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp. Cell Res. 315, 1574–1583 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M. A. Function and dysfunction of the PI system in membrane trafficking. EMBO J. 27, 2457–2470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Robertson, A. S., Smythe, E. & Ayscough, K. R. Functions of actin in endocytosis. Cell. Mol. Life Sci. 66, 2049–2065 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  Google Scholar 

  9. Pearse, B. M. Receptors compete for adaptors found in plasma membrane coated pits. EMBO J. 7, 3331–3336 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsui, W. & Kirchhausen, T. Stabilization of clathrin coats by the core of the clathrin-associated protein complex AP-2. Biochemistry 29, 10791–10798 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002). A landmark structural study revealing the molecular basis of AP-2 heterotetrameric core assembly and arrangement and the resulting constraints on cargo recognition.

    Article  CAS  PubMed  Google Scholar 

  12. Mitsunari, T. et al. Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell. Biol. 25, 9318–9323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shim, J. & Lee, J. Molecular genetic analysis of apm-2 and aps-2, genes encoding the medium and small chains of the AP-2 clathrin-associated protein complex in the nematode Caenorhabditis elegans. Mol. Cells 10, 309–316 (2000).

    CAS  PubMed  Google Scholar 

  14. Austin, C. D. et al. Death-receptor activation halts clathrin-dependent endocytosis. Proc. Natl Acad. Sci. USA 103, 10283–10288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 18, 3897–3908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeung, B. G., Phan, H. L. & Payne, G. S. Adaptor complex-independent clathrin function in yeast. Mol. Biol. Cell 10, 3643–3659 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998). References 17 and 18 identify the μ2-subunit as the AP-2 adaptor subunit that physically recognizes YXXØ sorting signals and highlight the structural basis of the recognition process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olusanya, O., Andrews, P. D., Swedlow, J. R. & Smythe, E. Phosphorylation of threonine 156 of the μ2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 11, 896–900 (2001). Demontrates that YXXØ signal recognition by AP-2 is positively regulated by the phosphorylation of the Thr156 residue of the μ2-subunit.

    Article  CAS  PubMed  Google Scholar 

  20. Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 156, 791–795 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Höning, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Semerdjieva, S. et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol. 183, 499–511 (2008). Reports that the timely exit of AP-2 from budded vesicles is supported by RAB5-dependent dephosphorylation of Thr156 and PtdIns(4,5)P 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant μ2 subunit and its effects on endocytosis. EMBO J. 18, 2489–2499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Motley, A. M. et al. Functional analysis of AP-2 α and μ2 subunits. Mol. Biol. Cell 17, 5298–5308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Owen, D. J., Setiadi, H., Evans, P. R., McEver, R. P. & Green, S. A. A third specificity-determining site in μ2 adaptin for sequences upstream of YxxΦ sorting motifs. Traffic 2, 105–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Kittler, J. T. et al. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit. Proc. Natl Acad. Sci. USA 105, 3616–3621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Royle, S. J. et al. Non-canonical YXXGΦ endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J. Cell Sci. 118, 3073–3080 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Van Damme, N. & Guatelli, J. HIV-1 Vpu inhibits accumulation of the envelope glycoprotein within clathrin-coated, Gag-containing endosomes. Cell. Microbiol. 10, 1040–1057 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Rollason, R., Korolchuk, V., Hamilton, C., Schu, P. & Banting, G. Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. J. Cell Sci. 120, 3850–3858 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Masuyama, N. et al. HM1.24 is internalized from lipid rafts by clathrin-mediated endocytosis through interaction with α-adaptin. J. Biol. Chem. 284, 15927–15941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marks, M. S., Woodruff, L., Ohno, H. & Bonifacino, J. S. Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components. J. Cell Biol. 135, 341–354 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Kelly, B. T. et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456, 976–979 (2008). Crystals of [DE]XXX[LIM] peptides bound to the heterotetrameric AP-2 core reveal how diLeu signals are accommodated by the adaptor and that the entrance of cargoes is regulated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, F., Jiang, X. & Sorkin, A. Tyrosine phosphorylation of the β2 subunit of clathrin adaptor complex AP-2 reveals the role of a di-leucine motif in the epidermal growth factor receptor trafficking. J. Biol. Chem. 278, 43411–43417 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, I., Doray, B., Govero, J. & Kornfeld, S. Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1–GTP. J. Cell Biol. 180, 467–472 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pitcher, C., Honing, S., Fingerhut, A., Bowers, K. & Marsh, M. Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. Mol. Biol. Cell 10, 677–691 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laguette, N. et al. Nef-induced CD4 endocytosis in human immunodeficiency virus type 1 host cells: role of the p56lck kinase. J. Virol. 83, 7117–7128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Craig, H. M., Pandori, M. W. & Guatelli, J. C. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc. Natl Acad. Sci. USA 95, 11229–11234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindwasser, O. W. et al. A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2. J. Virol. 82, 1166–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Chaudhuri, R., Mattera, R., Lindwasser, O. W., Robinson, M. S. & Bonifacino, J. S. A basic patch on α-adaptin required for binding of HIV-1 Nef and cooperative assembly of a CD4–Nef–AP-2 complex. J. Virol. 83, 2518–2530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e57 (2009). Detailed computational analysis of coat dynamics and internalization in BS-C-1 cells provides novel mechanistic insight into substages of assembly and cargo capture.

    Article  PubMed  CAS  Google Scholar 

  42. Santini, F., Marks, M. S. & Keen, J. H. Endocytic clathrin-coated pit formation is independent of receptor internalization signal levels. Mol. Biol. Cell 9, 1177–1194 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004). Time-resolved imaging of surface clathrin coat behaviour in BS-C-1 cells, showing astonishing uniformity of budding structures and correlating bud failure with a paucity of packaged cargo.

    Article  CAS  PubMed  Google Scholar 

  44. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005). Using an intelligent oscillating pH imaging format, precise entry of cargo molecules into the cell interior is catalogued, repeated budding events from large, long-lived clathrin-coated structures are observed and actin involvement is shown.

    Article  CAS  PubMed  Google Scholar 

  45. Bellve, K. D. et al. Plasma membrane domains specialized for clathrin-mediated endocytosis in primary cells. J. Biol. Chem. 281, 16139–16146 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Keyel, P. A., Watkins, S. C. & Traub, L. M. Endocytic adaptor molecules reveal an endosomal population of clathrin by total internal reflection fluorescence microscopy. J. Biol. Chem. 279, 13190–13204 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Chetrit, D., Ziv, N. & Ehrlich, M. Dab2 regulates clathrin assembly and cell spreading. Biochem. J. 418, 701–715 (2008).

    Article  Google Scholar 

  48. Warren, R. A., Green, F. A., Stenberg, P. E. & Enns, C. A. Distinct saturable pathways for the endocytosis of different tyrosine motifs. J. Biol. Chem. 273, 17056–17063 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003). Together with reference 50, this report details the somewhat surprising finding that internalization of subsets of clathrin-dependent cargo continues efficiently in cells that have been depleted of AP-2 by RNAi.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. & Ungewickell, E. J. Effect of clathrin heavy chain- and α-adaptin specific small interfering RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem. 278, 45160–45170 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Keyel, P. A. et al. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell 17, 4300–4317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maurer, M. E. & Cooper, J. A. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 119, 4235–4246 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Eden, E. R., Sun, X. M., Patel, D. D. & Soutar, A. K. Adaptor protein Disabled-2 modulates low density lipoprotein (LDL) receptor synthesis in fibroblasts from patients with autosomal recessive hypercholesterolemia. Hum. Mol. Genet. 16, 2751–2759 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Moskowitz, H. S., Yokoyama, C. T. & Ryan, T. A. Highly cooperative control of endocytosis by clathrin. Mol. Biol. Cell 16, 1769–1776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Owen, D. J., Collins, B. M. & Evans, P. R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20, 153–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Keyel, P. A. et al. The AP-2 adaptor β2 appendage scaffolds alternate cargo endocytosis. Mol. Biol. Cell 19, 5309–5326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stolt, P. C. & Bock, H. H. Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell. Signal. 18, 1560–1571 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Chao, W. T. & Kunz, J. Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett. 583, 1337–1343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Teckchandani, A. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration. J. Cell Biol. 86, 99–111 (2009).

    Article  CAS  Google Scholar 

  62. Maginnis, M. S. et al. NPXY motifs in the β1 integrin cytoplasmic tail are required for functional reovirus entry. J. Virol. 82, 3181–3191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eto, D. S., Gordon, H. B., Dhakal, B. K., Jones, T. A. & Mulvey, M. A. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell. Microbiol. 10, 2553–2567 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Wendland, B. Epsins: adaptors in endocytosis? Nature Rev. Mol. Cell Biol. 3, 971–977 (2002).

    Article  CAS  Google Scholar 

  65. Sorkina, T. et al. RNA interference screen reveals an essential role of Nedd4–2 in dopamine transporter ubiquitination and endocytosis. J. Neurosci. 26, 8195–8205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Aguilar, R. C., Watson, H. A. & Wendland, B. The yeast Epsin Ent1 is recruited to membranes through multiple independent interactions. J. Biol. Chem. 278, 10737–10743 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  69. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Barriere, H. et al. Molecular basis of Ub-dependent internalization of membrane proteins in mammalian cells. Traffic 7, 282–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hawryluk, M. J. et al. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 7, 262–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem. 279, 16657–16661 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Rappoport, J. Z. & Simon, S. M. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J. Cell Sci. 122, 1301–1305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang, F., Goh, L. K. & Sorkin, A. EGF receptor ubiquitination is not necessary for its internalization. Proc. Natl Acad. Sci. USA 104, 16904–16909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Kazazic, M. et al. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic 10, 235–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Duncan, L. M. et al. Lysine-63 linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25, 1635–1645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Galan, J. M. & Haguenauer-Tsapis, R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16, 5847–5854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Springael, J. Y., Galan, J. M., Haguenauer-Tsapis, R. & Andre, B. NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J. Cell Sci. 112 1375–1383 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Paiva, S. et al. Glucose-induced ubiquitylation and endocytosis of the yeast JEN1 transporter: role of K63-linked ubiquitin chains. J. Biol. Chem. 284, 19228–19236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Geetha, T., Jiang, J. & Wooten, M. W. Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol. Cell 20, 301–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Sims, J. J. & Cohen, R. E. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol. Cell 33, 775–783 (2009). References 82 and 83 nicely explain how suitably positioned tandem UIMs are selective for Lys63-linked ubiquitin chains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sato, Y. et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 18 Jun 2009 (doi:10.1038/emboj.2009.160).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Belgareh-Touze, N. et al. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem. Soc. Trans. 36, 791–796 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, H. C. & Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307–3318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kee, Y., Lyon, N. & Huibregtse, J. M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 24, 2414–2424 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shenoy, S. K. et al. β-Arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl Acad. Sci. USA 106, 6650–6655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kee, Y., Munoz, W., Lyon, N. & Huibregtse, J. M. The Ubp2 deubiquitinating enzyme modulates Rsp5-dependent K63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem. 281, 36724–36731 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Saeki, Y. et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359–371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nikko, E., Sullivan, J. A. & Pelham, H. R. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep. 9, 1216–1221 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J. & Emr, S. D. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135, 714–725 (2008). References 90 and 91 define the role of the yeast β-arrestin-related ARTs in guiding the Rsp5 E3 ligase to transmembrane cargoes to facilitate their ubiquitin-dependent internalization.

    Article  CAS  PubMed  Google Scholar 

  92. Lundh, F. et al. Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry 48, 4497–4505 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Alvarez, C. E. On the origins of arrestin and rhodopsin. BMC Evol. Biol. 8, 222 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Marchese, A., Paing, M. M., Temple, B. R. & Trejo, J. G protein-coupled receptor sorting to endosomes and lysosomes. Annu. Rev. Pharmacol. Toxicol. 48, 601–629 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Edeling, M. A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Burtey, A. et al. The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of β-arrestins. Traffic 8, 914–931 (2007). References 95 and 96 reveal that the AP-2-binding sequence in β-arrestins normally contributes to maintaining the basal conformation of the CLASP but becomes active when a phosphorylated GPCR is bound.

    Article  CAS  PubMed  Google Scholar 

  97. Santini, F., Gaidarov, I. & Keen, J. H. G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J. Cell Biol. 156, 665–676 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Scott, M. G., Benmerah, A., Muntaner, O. & Marullo, S. Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J. Biol. Chem. 277, 3552–3559 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C. & Benovic, J. L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41, 3321–3328 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chaineau, M., Danglot, L., Proux-Gillardeaux, V. & Galli, T. Role of Hrb in clathrin dependent endocytosis. J. Biol. Chem. 283, 34365–34373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jung, N. et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2. J. Cell Biol. 179, 1497–1510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol. 4, 202–213 (2003).

    Article  CAS  Google Scholar 

  104. Schlüter, T., Knauth, P., Wald, S., Boland, S. & Bohnensack, R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem. Biophys. Res. Commun. 379, 909–913 (2009).

    Article  PubMed  CAS  Google Scholar 

  105. Li, Y., Lu, W., Marzolo, M. P. & Bu, G. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J. Biol. Chem. 276, 18000–18006 (2001). A quantitative study showing that different members of the LDL receptor superfamily have significantly different internalization rates depending on the mix of sorting signals present in the cytosolic domain.

    Article  CAS  PubMed  Google Scholar 

  106. Pandey, M. S., Harris, E. N., Weigel, J. A. & Weigel, P. H. The cytoplasmic domain of the hyaluronan receptor for endocytosis (HARE) contains multiple endocytic motifs targeting coated pit-mediated internalization. J. Biol. Chem. 283, 21453–21461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wolfe, B. L., Marchese, A. & Trejo, J. Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J. Cell Biol. 177, 905–916 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kumar, K. G. et al. Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis. J. Cell Biol. 179, 935–950 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McCaffery, G., Welker, J., Scott, J., van der Salm, L. & Grimes, M. L. High-resolution fractionation of signaling endosomes containing different receptors. Traffic 10, 938–950 (2009).

    Article  CAS  Google Scholar 

  110. Gould, G. W. & Lippincott-Schwartz, J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nature Rev. Mol. Cell Biol. 10, 287–292 (2009).

    Article  CAS  Google Scholar 

  111. Castillon, G. A., Watanabe, R., Taylor, M., Schwabe, T. M. & Riezman, H. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic 10, 186–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leonard, D. et al. Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J. Cell Sci. 121, 3445–3458 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Tosoni, D. et al. TTP specifically regulates the internalization of the transferrin receptor. Cell 123, 875–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Mundell, S. J., Luo, J., Benovic, J. L., Conley, P. B. & Poole, A. W. Distinct clathrin-coated pits sort different G protein-coupled receptor cargo. Traffic 7, 1420–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Puthenveedu, M. A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell 127, 113–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005). A beautiful live-cell imaging study showing the temporal relationship between Rab proteins and maturing, cargo-laden endosomes.

    Article  CAS  PubMed  Google Scholar 

  118. Driskell, O. J., Mironov, A., Allan, V. J. & Woodman, P. G. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nature Cell Biol. 9, 113–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, W. & Struhl, G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131, 5367–5380 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Morris, S. M. & Cooper, J. A. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2, 111–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Rappoport, J. Z., Kemal, S., Benmerah, A. & Simon, S. M. Dynamics of clathrin and adaptor proteins during endocytosis. Am. J. Physiol. Cell Physiol. 291, C1072–C1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Sorensen, E. B. & Conner, S. D. AAK1 regulates numb function at an early step in clathrin-mediated endocytosis. Traffic 9, 1791–1800 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Tokumitsu, H. et al. Phosphorylation of Numb regulates its interaction with the clathrin-associated adaptor AP-2. FEBS Lett. 580, 5797–5801 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin coated vesicle assembly. PLoS Biol. 4, e262 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. N'Diaye, E. N. et al. The ubiquitin-like protein PLIC-2 is a negative regulator of G protein-coupled receptor endocytosis. Mol. Biol. Cell 19, 1252–1260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Herpers, B. & Rabouille, C. mRNA localization and ER-based protein sorting mechanisms dictate the use of transitional endoplasmic reticulum-Golgi units involved in Gurken transport in Drosophila oocytes. Mol. Biol. Cell 15, 5306–5317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7, 508–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Conner, S. D. & Schmid, S. L. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol. 156, 921–929 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jackson, A. P. et al. Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor μ2 kinase. J. Cell Biol. 163, 231–236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Conner, S. D., Schroter, T. & Schmid, S. L. AAK1 mediated μ2 phosphorylation is stimulated by assembled clathrin. Traffic 4, 885–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Hinrichsen, L., Meyerholz, A., Groos, S. & Ungewickell, E. J. Bending a membrane: how clathrin affects budding. Proc. Natl Acad. Sci. USA 103, 8715–8720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Yu, A. et al. Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev. Cell 12, 129–141 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Janvier, K. et al. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 γ-σ1 and AP-3 δ-σ3 hemicomplexes. J. Cell Biol. 163, 1281–1290 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mason, A. K., Jacobs, B. E. & Welling, P. A. AP-2-dependent internalization of potassium channel Kir2.3 is driven by a novel di-hydrophobic signal. J. Biol. Chem. 283, 5973–5984 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Space constraints have unfortunately precluded discussion of many excellent and important studies in this area. I am grateful to N. Johnson, D. Owen and the anonymous referees for critical comments on the manuscript, to J. Heuser, R. Roth, S. Watkins and J. Thieman for beautiful microscopic images and to members of my laboratory for discussions. Support was from the US National Institutes of Health (R01 DK53249) and the American Heart Association (Award 0540007N).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Protein DataBank

 1BXX

1KY7

1M7E

1W80

1YX6

2G30

2IV9

2JKR

2PR9

2VGL

2VX8

FURTHER INFORMATION

Linton M. traub's homepage

Glossary

Clathrin

A triskelion-shaped protomer, composed of three heavy and three light chains, that polymerizes into a characteristic polyhedrally structured coat that is found on several intracellular membrane surfaces.

SNARE

(Soluble N-ethylmaleimide-sensitive factor attachment protein receptor). A member of a family of transmembrane proteins that assemble into heteromeric four-helix-bundle complexes to fuse membrane bilayers together.

Dynamin

A large regulatory GTPase that drives membrane scission when it is polymerized into a spiral at the base of deeply invaginated buds.

AAK1

(Adaptor-associated kinase 1). A Ser/Thr protein kinase that regulates endocytosis and cargo recognition.

Type I transmembrane protein

A single-pass transmembrane protein oriented with an extracellular N terminus and a cytosolic C terminus.

Type II transmembrane protein

A single-pass transmembrane protein oriented with an extracellular C terminus and a cytosolic N terminus.

AP-1

An AP-2-related heterotetrameric sorting adaptor that couples cargo selection with clathrin assembly at the TGN and/or in endosomes.

AP-3

An AP-2-related heterotetrameric sorting adaptor that is involved in sorting transmembrane cargoes through the endosomal system.

Integrin

A heterodimeric surface receptor that binds the extracellular matrix and couples to the actin cytoskeleton at the internal membrane surface.

FERM domain

A tripartite domain found in talin and ERM proteins that binds to integrins, thereby activating their extracellular domain through conformational rearrangements.

Focal adhesion

A large localized contact between a cell and the extracellular matrix. It is established through integrins and serves as an intracellular signalling station to arrange actin into stress fibres.

NUMB

A PTB domain-containing CLASP, first identified in D. melanogaster, that is involved in asymmetric positioning of cell surface receptors.

Fibronectin

A secreted extracellular matrix component that assembles into polymers on binding to integrins.

UBA domain

(Ubiquitin-associated domain). A small three-helix fold that binds to ubiquitin monomers or ubiquitin chains.

ENTH domain

(Epsin N-terminal homology domain). An all-α-helical module that binds to PtdIns(4,5)P2 and might change the properties of the underlying bilayer.

NPF motif

An Asn-Pro-Phe tripeptide sequence that binds to EH domains and is often tandemly arrayed in disordered polypeptide regions.

EH domain

(EPS15 homology domain). An 100-residue folded domain found in proteins that are involved in endocytosis and vesicular transport.

E3 ubiquitin ligase

An enzyme that catalyses the transfer of a thioester-linked reactive ubiquitin to an acceptor Lys residue on the substrate protein and determines substrate specificity.

E2 enzyme

The second intermediate in the three-step process of ubiquitylation. It delivers activated ubiquitin to an E3 ligase.

Deubiquitylating enzyme

An isopeptidase that removes ubiquitin monomers from acceptor proteins or assembled ubiquitin chains, thereby replenishing the pool of ubiquitin and allowing further ubiquitylation.

26S proteasome

A large proteolytic complex that generally degrades polyubiquitylated proteins in the cytosol.

WW domain

A small modular domain containing two crucial Trp residues that engage short Pro-rich interaction peptides with micromolar affinity to mediate protein–protein interactions.

G protein-coupled receptor

(GPCR). A member of the largest class of signalling receptors, which are defined by seven transmembrane α-helices. GPCRs couple a wide range of stimuli, including light, odorants, hormones and small bioactive molecules, to various intracellular signal transduction pathways.

Heterotrimeric G protein

A member of a family of membrane-apposed effectors of GPCRs that are composed of α, β and γ subunits and stimulate adenylyl cyclase, phospholipase C, ion channels or several other signalling molecules.

Longin domain

A modular domain found in several functionally discrete proteins that are involved in protein trafficking.

Retromer

A non-clathrin-based sorting coat that is assembled on endosomal tubules.

COPII

(Coat protein II). A complex that is involved in packaging cargoes into transport vesicles leaving the ER from discrete exit sites.

Delta

A transmembrane ligand for the Notch receptor that internalizes, along with the extracellular domain of Notch, after proteolysis triggered by Delta engagement.

Notch signalling

A conserved pathway in which proteolysis of the ligand-bound Notch receptor releases the intracytoplasmic domain, which enters the nucleus and regulates gene expression.

Imaginal discs

Sheets of epithelial cells in D. melanogaster larvae that, during pupation, develop into different adult body parts and structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traub, L. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10, 583–596 (2009). https://doi.org/10.1038/nrm2751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing