Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Thymus involution and regeneration: two sides of the same coin?

Abstract

In vertebrates, the thymus is the main site of T cell development. The thymus reaches its maximum output during adolescence, after which it shrinks and generates fewer and fewer T cells. Physiological age-related involution of the thymus and failure to recover after injury are associated with impaired cellular immunity; hence, there is considerable interest in developing strategies to combat these deficiencies. In this Opinion article, we briefly review the phylogenetic and ontogenetic hallmarks of thymus development and function, and we discuss experimental models of impaired thymopoiesis and the molecular mechanisms of thymopoietic recovery. At each stage of the discussion we highlight the major gaps in our current knowledge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of TECs.
Figure 2: Lympho–stromal interactions underlying T cell development.
Figure 3: Contraction and expansion of TEC populations in different settings.

Similar content being viewed by others

References

  1. Gordon, J. et al. Functional evidence for a single endodermal origin for the thymic epithelium. Nature Immunol. 5, 546–553 (2004).

    Article  CAS  Google Scholar 

  2. Gordon, J., Bennett, A. R., Blackburn, C. C. & Manley, N. R. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech. Dev. 103, 141–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H. & Boehm, T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Bleul, C. C. et al. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441, 992–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Dooley, J., Erickson, M. & Farr, A. G. Lessons from thymic epithelial heterogeneity: FoxN1 and tissue-restricted gene expression by extrathymic, endodermally derived epithelium. J. Immunol. 183, 5042–5049 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Meier, N., Dear, T. N. & Boehm, T. Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech. Dev. 89, 215–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Osada, M. et al. The Wnt signaling antagonist Kremen1 is required for development of thymic architecture. Clin. Dev. Immunol. 13, 299–319 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rodewald, H.-R. Thymus organogenesis. Annu. Rev. Immunol. 26, 355–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Manley, N. R. & Condie, B. G. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog. Mol. Biol. Transl. Sci. 92, 103–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Arnold, J. S. et al. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133, 977–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Manley, N. R. & Capecchi, M. R. Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev. Biol. 195, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wallin, J. et al. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 122, 23–30 (1996).

    CAS  PubMed  Google Scholar 

  13. Griffith, A. V. et al. Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Dev. Biol. 327, 216–227 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hetzer-Egger, C. et al. Thymopoiesis requires Pax9 function in thymic epithelial cells. Eur. J. Immunol. 32, 1175–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Zou, D. et al. Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev. Biol. 293, 499–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Revest, J. M., Suniara, R. K., Kerr, K., Owen, J. J. T. & Dickson, C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167, 1954–1961 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Jenkinson, W. E., Jenkinson, E. J. & Anderson, G. Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J. Exp. Med. 198, 325–332 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jenkinson, W. E., Rossi, S. W., Parnell, S. M., Jenkinson, E. J. & Anderson, G. PDGFRα-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood 109, 954–960 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Erickson, M. et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood 100, 3269–3278 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Bleul, C. C. & Boehm, T. BMP signaling is required for normal thymus development. J. Immunol. 175, 5213–5221 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Patel, S. R., Gordon, J., Mahbub, F., Blackburn, C. C. & Manley, N. R. Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr. Patterns 6, 794–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Gordon, J., Patel, S. R., Mishina, Y. & Manley, N. R. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev. Biol. 339, 141–154 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. García-Ceca, J. et al. On the role of Eph signalling in thymus histogenesis; EphB2/B3 and the organizing of the thymic epithelial network. Int. J. Dev. Biol. 53, 971–982 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. García-Ceca, J. et al. Cell-autonomous role of EphB2 and EphB3 receptors in the thymic epithelial cell organization. Eur. J. Immunol. 39, 2916–2924 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Balciunaite, G. et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nature Immunol. 3, 1102–1108 (2002).

    Article  CAS  Google Scholar 

  26. Pongracz, J., Hare, K., Harman, B., Anderson, G. & Jenkinson, E. J. Thymic epithelial cells provide Wnt signals to developing thymocytes. Eur. J. Immunol. 33, 1949–1956 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Zuklys, S. et al. Stabilized β-catenin in thymic epithelial cells blocks thymus development and function. J. Immunol. 182, 2997–3007 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Osada, M. et al. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS ONE 5, e9062 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kvell, K. et al. Wnt4 and LAP2α as pacemakers of thymic epithelial senescence. PloS ONE 5, e10701 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Heinonen, K. M. et al. Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 118, 5163–5173 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Varecza, Z. et al. Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mech. Ageing Dev. 132, 249–256 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cheng, L. et al. Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J. Biol. Chem. 285, 5836–5847 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Corbeaux, T. et al. Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc. Natl Acad. Sci. USA 107, 16613–16618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, L., Xiao, S. & Manley, N. R. Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113, 567–574 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guo, J. et al. Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium. J. Mol. Med. 89, 263–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, J. et al. Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS ONE 7, e34681 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vroegindeweij, E. et al. Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol. Immunol. 47, 1106–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Dooley, J., Erickson, M., Roelink, H. & Farr, A. G. Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium. Dev. Dyn. 233, 1605–1612 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Nehls, M. et al. Two genetically separable steps in the differentiation of thymic epithelium. Science 272, 886–889 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Blackburn, C. C. et al. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc. Natl Acad. Sci. USA 93, 5742–5746 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rossi, S. W., Jenkinson, W. E., Anderson, G. & Jenkinson, E. J. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441, 988–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Rossi, S. W. et al. Redefining epithelial progenitor potential in the developing thymus. Eur. J. Immunol. 37, 2411–2418 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Rodewald, H.-R., Paul, S., Haller, C., Bluethmann, H. & Blum, C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Baik, S., Jenkinson, E. J., Lane, P. J. L., Anderson, G. & Jenkinson, W. E. Generation of both cortical and Aire+ medullary thymic epithelial compartments from CD205+ progenitors. Eur. J. Immunol. 43, 589–594 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ohigashi, I. et al. Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells. Proc. Natl Acad. Sci. USA 110, 9885–9890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Irla, M. et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29, 451–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. White, A. J. et al. Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J. Immunol. 185, 4769–4776 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Roberts, N. A. et al. Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium. Immunity 36, 427–437 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li, M. et al. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature 407, 633–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Hamazaki, Y. et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nature Immunol. 8, 304–311 (2007).

    Article  CAS  Google Scholar 

  53. Rossi, S. W. et al. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109, 3803–3811 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gordon, J. et al. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev. Biol. 7, 69 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Soza-Ried, C., Bleul, C. C., Schorpp, M. & Boehm, T. Maintenance of thymic epithelial phenotype requires extrinsic signals in mouse and zebrafish. J. Immunol. 181, 5272–5277 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Park, C. S. et al. Differential lineage specification of thymic epithelial cells from bipotent precursors revealed by TSCOT promoter activities. Genes Immun. 14, 401–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Hong, R. The DiGeorge anomaly. Clin. Rev. Allergy Immunol. 20, 43–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. van Gent, R. et al. Long-term restoration of the human T-cell compartment after thymectomy during infancy: a role for thymic regeneration? Blood 118, 627–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Sauce, D. et al. Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J. Immunol. 189, 5541–5548 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Eysteinsdottir, J. H. et al. The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life. Clin. Exp. Immunol. 136, 349–355 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Inami, Y. et al. Differentiation of induced pluripotent stem cells to thymic epithelial cells by phenotype. Immunol. Cell Biol. 89, 314–321 (2011).

    Article  PubMed  Google Scholar 

  62. Hidaka, K. et al. Differentiation of pharyngeal endoderm from mouse embryonic stem cell. Stem Cells Dev. 19, 1735–1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Lai, L. et al. Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood 118, 3410–3418 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Lai, L. & Jin, J. Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells 27, 3012–3020 (2009).

    CAS  PubMed  Google Scholar 

  65. Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nature Biotech. 29, 267–272 (2011).

    Article  CAS  Google Scholar 

  66. Müller, S. M. et al. Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture. Proc. Natl Acad. Sci. USA 102, 10587–10592 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isotani, A., Hatayama, H., Kaseda, K., Ikawa, M. & Okabe, M. Formation of a thymus from rat ES cells in xenogeneic nude mouse — rat ES chimeras. Genes Cells 16, 397–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Bonfanti, P. et al. Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 466, 978–982 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Parent, A. V. et al. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13, 219–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, X. et al. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13, 230–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Pinto, S. et al. An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J. Immunol. 190, 1085–1093 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Dervovic, D. & Zúñiga-Pflücker, J. C. Positive selection of T cells, an in vitro view. Semin. Immunol. 22, 276–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Beaudette-Zlatanova, B. C. et al. A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells. Exp. Hematol. 39, 570–579 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Calderón, L. & Boehm, T. Synergistic, context-dependent and hierarchical functions of epithelial components in thymic microenvironments. Cell 149, 159–172 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Hozumi, K. et al. Delta-like 4 is indispensable in thymic environment specific for T cell development. J. Exp. Med. 205, 2507–2513 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Koch, U. et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205, 2515–2523 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mori, K., Itoi, M., Tsukamoto, N., Kubo, H. & Amagai, T. The perivascular space as a path of hematopoietic progenitor cells and mature T cells between the blood circulation and the thymic parenchyma. Int. Immunol. 19, 745–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Zachariah, M. A. & Cyster, J. G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328, 1129–1135 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nature Rev. Immunol. 6, 127–135 (2006).

    Article  CAS  Google Scholar 

  80. Petrie, H. T. & Zúñiga-Pflücker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Benz, C., Heinzel, K. & Bleul, C. C. Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur. J. Immunol. 34, 3652–3663 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Roberts, N. A. et al. Absence of thymus crosstalk in the fetus does not preclude hematopoietic induction of a functional thymus in the adult. Eur. J. Immunol. 39, 2395–2402 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Hoot, G. P. & Kettman, J. R. Extra-thymic immature T cells: development in polyoma virus-induced murine salivary gland tumors. Eur. J. Immunol. 19, 1991–1998 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Kendall, M. D. & Ward, P. Erythropoiesis in an avian thymus. Nature 249, 366–367 (1974).

    Article  CAS  PubMed  Google Scholar 

  85. Boehm, T. Design principles of adaptive immune systems. Nature Rev. Immunol. 11, 307–317 (2011).

    Article  CAS  Google Scholar 

  86. Bajoghli, B. et al. A thymus candidate in lampreys. Nature 470, 90–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Boehm, T., Hess, I. & Swann, J. B. Evolution of lymphoid tissues. Trends Immunol. 33, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Boehm, T. et al. VLR-based adaptive immunity. Annu. Rev. Immunol. 30, 203–220 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Boehm, T., Iwanami, N. & Hess, I. Evolution of the immune system in the lower vertebrates. Ann. Rev. Genom. Hum. Genet. 13, 127–149 (2012).

    Article  CAS  Google Scholar 

  90. Hess, I. & Boehm, T. Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity 36, 298–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Haynes, B. F. & Heinly, C. S. Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J. Exp. Med. 181, 1445–1458 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Gray, D. H. D. et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108, 3777–3785 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Simpson, L. O. Studies on the NZB mouse thymus. I. Thymus weight relationships to age and body weight from birth to old age. Am. J. Anat. 141, 127–132 (1974).

    Article  CAS  PubMed  Google Scholar 

  94. Dudakov, J. A. et al. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. J. Immunol. 183, 7084–7094 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Griffith, A. V., Fallahi, M., Venables, T. & Petrie, H. T. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11, 169–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Lynch, H. E. et al. Thymic involution and immune reconstitution. Trends Immunol. 30, 366–373 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Rudd, B. D. et al. Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc. Natl Acad. Sci. USA 108, 13694–13699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martins, V. C. et al. Thymus-autonomous T cell development in the absence of progenitor import. J. Exp. Med. 209, 1409–1417 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Boehm, T. Self-renewal of thymocytes in the absence of competitive precursor replenishment. J. Exp. Med. 209, 1397–1400 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Reassessing the role of growth hormone and sex steroids in thymic involution. Clin. Immunol. 118, 117–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Offner, F., Kerre, T., De Smedt, M. & Plum, J. Bone marrow CD34+ cells generate fewer T cells in vitro with increasing age and following chemotherapy. Br. J. Haematol. 104, 801–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Itoi, M., Tsukamoto, N. & Amagai, T. Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. Int. Immunol. 19, 127–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Castermans, E. et al. Thymic recovery after allogeneic hematopoietic cell transplantation with non-myeloablative conditioning is limited to patients younger than 60 years of age. Haematologica 96, 298–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Toubert, A., Glauzy, S., Douay, C. & Clave, E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens 79, 83–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Zook, E. C. et al. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 118, 5723–5731 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Garfin, P. M. et al. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. J. Exp. Med. 210, 1087–1097 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dooley, J., Erickson, M., Larochelle, W. J., Gillard, G. O. & Farr, A. G. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev. Dyn. 236, 3459–3471 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Seggewiss, R. et al. Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110, 441–449 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Chu, Y. W. et al. Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112, 2836–2846 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Talaber, G. et al. Wnt-4 protects thymic epithelial cells against dexamethasone-induced senescence. Rejuven. Res. 14, 241–248 (2011).

    Article  CAS  Google Scholar 

  111. Hauri-Hohl, M. M. et al. TGF-β signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 112, 626–634 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nunes-Alves, C., Nobrega, C., Behar, S. M. & Correia-Neves, M. Tolerance has its limits: how the thymus copes with infection. Trends Immunol. http://dx.doi.org/10.1016/j.it.2013.06.004 (2013).

  113. Papadopoulou, A. S. et al. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nature Immunol. 13, 181–187 (2012).

    Article  CAS  Google Scholar 

  114. Youm, Y.-H. et al. The NLRP3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep. 1, 56–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Dudakov, J. A. et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336, 91–95 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Jenkinson, W. E., Bacon, A., White, A. J., Anderson, G. & Jenkinson, E. J. An epithelial progenitor pool regulates thymus growth. J. Immunol. 181, 6101–6108 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Rode, I. & Boehm, T. Regenerative capacity of adult cortical thymic epithelial cells. Proc. Natl Acad. Sci. USA 109, 3463–3468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Doupé, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Mascré, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Markert, M. L., Devlin, B. H., Chinn, I. K. & McCarthy, E. A. Thymus transplantation in complete DiGeorge anomaly. Immunol. Res. 44, 61–70 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ciupe, S. M., Devlin, B. H., Markert, M. L. & Kepler, T. B. The dynamics of T-cell receptor repertoire diversity following thymus transplantation for DiGeorge anomaly. PloS Comput. Biol. 5, e1000396 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Albuquerque, A. S. et al. Human FOXN1-deficiency is associated with αβ double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS ONE 7, e37042 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Boehm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehm, T., Swann, J. Thymus involution and regeneration: two sides of the same coin?. Nat Rev Immunol 13, 831–838 (2013). https://doi.org/10.1038/nri3534

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing