Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TH17 cells in development: an updated view of their molecular identity and genetic programming

Key Points

  • T helper 17 (TH17) cells are a newly described subset of effector T cells.

  • TH17 cells produce interleukin-17 (IL-17), IL-17F, IL-21 and IL-22.

  • TH17-cell differentiation is initiated by transforming growth factor-β (TGFβ) and IL-6; differentiation is sustained by IL-21 and possibly completed or maintained by IL-23.

  • TH17-cell-specific genetic programming is mediated by signal transducer and activator of transcription 3 (STAT3), downstream of IL-6 and IL-21.

  • TH17 cells express two orphan nuclear receptors, retinoic-acid-receptor-related orphan receptor-α (RORα) and RORγ, which are required for TH17-cell differentiation.

Abstract

Following activation, CD4+ T cells differentiate into different lineages of helper T (TH) cells that are characterized by distinct developmental regulation and biological functions. TH17 cells have recently been identified as a new lineage of effector TH cells, and they have been shown to be important in immune responses to infectious agents, as well as in various immune diseases. Over the past two to three years, there has been a rapid progress in our understanding of the differentiation programme of TH17 cells. Here, I summarize our current knowledge of the unique gene expression, cytokine-mediated regulation and transcriptional programming of TH17 cells, and provide my personal perspectives on the future studies that are required to elucidate this lineage in more detail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme of T-helper-cell differentiation.
Figure 2: Cytokine-mediated regulation of TH17-cell differentiation.
Figure 3: Transcriptional regulation of TH17-cell differentiation.

Similar content being viewed by others

References

  1. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Dong, C. & Flavell, R. A. TH1 and TH2 cells. Curr. Opin. Hematol. 8, 47–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Glimcher, L. H. & Murphy, K. M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  4. Faria, A. M. & Weiner, H. L. Oral tolerance and TGF-β-producing cells. Inflamm. Allergy Drug Targets 5, 179–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Grazia Roncarolo, M. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    Article  Google Scholar 

  6. Wing, K., Fehervari, Z. & Sakaguchi, S. Emerging possibilities in the development and function of regulatory T cells. Int. Immunol. 18, 991–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Vinuesa, C. G., Tangye, S. G., Moser, B. & Mackay, C. R. Follicular B helper T cells in antibody responses and autoimmunity. Nature Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  Google Scholar 

  8. Dong, C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nature Rev. Immunol. 6, 329–334 (2006).

    Article  CAS  Google Scholar 

  9. Harrington, L. E., Mangan, P. R. & Weaver, C. T. Expanding the effector CD4 T-cell repertoire: the TH17 lineage. Curr. Opin. Immunol. 18, 349–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in TH cells. J. Immunol. 165, 6107–6115 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Dong, C. & Nurieva, R. I. Regulation of immune and autoimmune responses by ICOS. J. Autoimmun. 21, 255–260 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrington, L. E. et al. Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  15. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin-17. Nature Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  16. Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Moseley, T. A., Haudenschild, D. R., Rose, L. & Reddi, A. H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14, 155–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin-17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007). This paper, together with references 59 and 66, describes the existence of human T H 17 cells and their possible regulation by cytokines.

    Article  CAS  Google Scholar 

  19. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  20. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nature Med. 13, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Wei, L., Laurence, A., Elias, K. M. & O'Shea, J. J. IL-21 is produced by TH17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Yao, Z. et al. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Toy, D. et al. Cutting edge: Interleukin-17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Shalom-Barak, T., Quach, J. & Lotz, M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB. J. Biol. Chem. 273, 27467–27473 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin-17 signal transduction. J. Exp. Med. 191, 1233–1240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Qian, Y. et al. The adaptor Act1 is required for interleukin-17-dependent signaling associated with autoimmune and inflammatory disease. Nature Immunol. 8, 247–256 (2007).

    Article  CAS  Google Scholar 

  28. Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110, 55–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Ye, P. et al. Requirement of interleukin-17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bush, K. A., Farmer, K. M., Walker, J. S. & Kirkham, B. W. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 46, 802–805 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, H.-C. et al. Interleukin-17-producing T helper cells and interleukin-17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunol. 9, 166–175 (2008).

    Article  CAS  Google Scholar 

  35. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203, 2715–2725 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Happel, K. I. et al. Cutting edge: Roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–4436 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Shin, H. C. K., Benbernou, N., Esnault, S. & Guenounou, M. Expression of IL-17 in human memory CD45RO+ T lymphocytes and its regulation by protein kinase A pathway. Cytokine 11, 257–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Michel, M. L. et al. Identification of an IL-17-producing NK1.1 iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunol. 8, 369–377 (2007).

    Article  CAS  Google Scholar 

  41. Shibata, K., Yamada, H., Hara, H., Kishihara, K. & Yoshikai, Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006). This paper, together with references 68 and 69, shows that T H 17-cell differentiation in mice is initiated by TGFβ and IL-6.

    Google Scholar 

  43. Hizawa, N., Kawaguchi, M., Huang, S. K. & Nishimura, M. Role of interleukin-17F in chronic inflammatory and allergic lung disease. Clin. Exp. Allergy 36, 1109–1114 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17, 435–440 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. Wright, J. F. et al. Identification of an interleukin-17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hurst, S. D. et al. New IL-17 family members promote TH1 or TH2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169, 443–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Oda, N. et al. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am. J. Respir. Crit. Care Med. 171, 12–18 (2005).

    Article  PubMed  Google Scholar 

  48. Kawaguchi, M. et al. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J. Immunol. 167, 4430–4435 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Hymowitz, S. G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. Embo J. 20, 5332–5341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuestner, R. E. et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol. 179, 5462–5473 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Chung, Y. et al. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 16, 902–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by TH17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Aujla, S. J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Med. 14, 275–281 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kreymborg, K. et al. IL-22 is expressed by TH17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin-17-producing helper T cells. Nature Immunol. 8, 950–957 (2007).

    Article  CAS  Google Scholar 

  60. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  PubMed  Google Scholar 

  62. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol. 8, 967–974 (2007). References 60–62 describe the function of IL-21 in T H 17-cell differentiation.

    Article  CAS  Google Scholar 

  63. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-TH1/TH2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Williams, I. R. CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann. NY Acad. Sci. 1072, 52–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Hirota, K. et al. Preferential recruitment of CCR6-expressing TH17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Annunziato, F. et al. Phenotypic and functional features of human TH17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nurieva, R. et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 25, 2623–2633 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Elias, K. M. et al. Retinoic acid inhibits TH17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111, 1013–1020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kang, S. G., Lim, H. W., Andrisani, O. M., Broxmeyer, H. E. & Kim, C. H. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J. Immunol. 179, 3724–3733 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Schambach, F., Schupp, M., Lazar, M. A. & Reiner, S. L. Activation of retinoic acid receptor-α favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur. J. Immunol. 37, 2396–2399 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Sun, C.-M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 TReg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007). References 70–75 describe the function of retinoic acid in the promotion of FOXP3 expression, and references 71, 73 and 74 show that retinoic acid also inhibits T H 17-cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007). This paper, together with reference 95, describes the essential role of STAT3 in T H 17-cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  77. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). This paper identifies RORγt as a master transcription factor for T H 17 cells.

    Article  CAS  PubMed  Google Scholar 

  78. Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates TH1- and TH17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Akimzhanov, A. M., Yang, X. O. & Dong, C. Chromatin remodeling of interleukin-17 (IL-17)–IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282, 5969–5972 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin-17-producing human T helper cells. Nature Immunol. 8, 942–949 (2007).

    Article  CAS  Google Scholar 

  81. Harada, M. et al. IL-21-induced Bɛ cell apoptosis mediated by natural killer T cells suppresses IgE responses. J. Exp. Med. 203, 2929–2937 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hunter, C. A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nature Rev. Immunol. 5, 521–531 (2005).

    Article  CAS  Google Scholar 

  83. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Aggarwal, S., Ghilardi, N., Xie, M. H., De Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Berenson, L. S., Yang, J., Sleckman, B. P., Murphy, T. L. & Murphy, K. M. Selective requirement of p38α MAPK in cytokine-dependent, but not antigen receptor-dependent, TH1 responses. J. Immunol. 176, 4616–4621 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Thakker, P. et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 178, 2589–2598 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH17 cell-mediated pathology. Nature Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  88. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wellcome Trust Case Control Consortium. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

  90. Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Okamoto, H. & Momohara, S. Interleukin-12/23 monoclonal antibody for psoriasis. N. Engl. J. Med. 356, 2003 (2007).

    CAS  PubMed  Google Scholar 

  92. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Schiffenbauer, J. et al. The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin. Immunol. 95, 117–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Batten, M. et al. Interleukin-27 limits autoimmune encephalomyelitis by suppressing the development of interleukin-17-producing T cells. Nature Immunol. 7, 929–936 (2006).

    Article  CAS  Google Scholar 

  97. Stumhofer, J. S. et al. Interleukin-27 negatively regulates the development of interleukin-17-producing T helper cells during chronic inflammation of the central nervous system. Nature Immunol. 7, 937–945 (2006).

    Article  CAS  Google Scholar 

  98. Kleinschek, M. A. et al. IL-25 regulates TH17 function in autoimmune inflammation. J. Exp. Med. 204, 161–170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Angkasekwinai, P. et al. Interleukin-25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol. 3, 549–557 (2002).

    Article  CAS  Google Scholar 

  101. Kurata, H., Lee, H. J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of TH2-specific cytokines and transcription factors in developing TH1 cells. Immunity 11, 677–688 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Mathur, A. N. et al. Stat3 and Stat4 direct development of IL-17-secreting TH cells. J. Immunol. 178, 4901–4907 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA 103, 8137–8142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nishihara, M. et al. IL-6–gp130–STAT3 in T cells directs the development of IL-17+ TH with a minimum effect on that of TReg in the steady state. Int. Immunol. 19, 695–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Kimura, A., Naka, T. & Kishimoto, T. IL-6-dependent and -independent pathways in the development of interleukin-17-producing T helper cells. Proc. Natl Acad. Sci. USA 104, 12099–12104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008). This paper identifies RORα expression in T H 17 cells and shows that RORα and RORγt together regulate T H 17-cell development.

    Article  CAS  PubMed  Google Scholar 

  107. Harris, T. J. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Jetten, A. M. Recent advances in the mechanisms of action and physiological functions of the retinoid-related orphan receptors (RORs). Curr. Drug Targets Inflamm. Allergy 3, 395–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Eberl, G. & Littman, D. R. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer's patches. Immunol. Rev. 195, 81–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunol. 8, 958–966 (2007).

    Article  CAS  Google Scholar 

  111. Hu, C.-M., Jang, S. Y., Fanzo, J. C. & Pernis, A. B. Modulation of T cell cytokine production by interferon regulatory factor-4. J. Biol. Chem. 277, 49238–49246 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl Acad. Sci. USA 99, 11808–11812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195, 1003–1012 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, G. R., Kim, S. T., Spilianakis, C. G., Fields, P. E. & Flavell, R. A. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24, 369–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M. & Ho, I. C. Ets-1 is a negative regulator of TH17 differentiation. J. Exp. Med. 204, 2825–2835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Young, D. A. et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum. 56, 1152–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Spolski, R. & Leonard, W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Herber, D. et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 178, 3822–3830 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank my past and current colleagues in my group and our many collaborators for their scientific contributions to the knowledge described in this Review. My research is funded by the National Institutes of Health (USA), the University of Texas MD Anderson Cancer Center, the Cancer Research Institute and the American Lung Association.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Chen Dong's homepage

Glossary

T helper 3 (TH3) cells

A regulatory T-cell subset that was originally thought to be involved in oral tolerance and that mainly secretes TGFβ. TGFβ produced by TH3 cells provides help for IgA class switching and has suppressive effects on both TH1 and TH2 cells. As the expression of CD25 and FOXP3 is induced in T cells under experimental TH3-cell differentiation conditions (T-cell receptor stimulation in the presence of IL-4, IL-10 and TGFβ), TH3 cells should be referred to as inducible regulatory T cells that proliferate in the periphery.

T regulatory type 1 (TR1) cells

A subset of CD4+ regulatory T cells that secrete high levels of IL-10 and that downregulate TH1- and TH2-cell responses in vitro and in vivo by a contact-independent mechanism(s) mediated by the secretion of soluble IL10 and TGFβ1.

Microarray analysis

A technique for measuring the transcription of genes. It involves hybridization of fluorescently labelled cDNA prepared from a cell or tissue of interest with glass slides or other surfaces dotted with thousands of oligonucleotides or cDNA, ideally representing all expressed genes in the species.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of multiple sclerosis. EAE can be induced in several mammalian species by immunization with myelin-derived antigens together with adjuvant. The immunized animals develop a paralytic disease that has several pathological features in common with multiple sclerosis in humans.

Systemic lupus erythematosus

(SLE). An autoimmune disease in which autoantibodies that are specific for DNA, RNA or proteins associated with nucleic acids form immune complexes that damage small blood vessels, particularly in the kidney. Patients with SLE generally have abnormal B- and T-cell function.

Germinal centre

A highly specialized and dynamic microenvironment that gives rise to secondary B-cell follicles during an immune response. It is the main site of B-cell maturation, leading to the generation of memory B cells and plasma cells that produce high-affinity antibodies.

Natural killer T (NKT) cell

A T cell that expresses both NK-cell receptors and an αβ-TCR. Some mouse NKT cells express an invariant TCR that uses the Vα14 variable region of the TCR α-chain and recognizes CD1d-associated antigen. NKT cells are characterized by cytolytic activity and the rapid production of cytokines, including IFNγ and IL-4, and they might regulate the function of other T cells.

γδ T cell

A T cell that expresses a T-cell receptor consisting of a γ-chain and a δ-chain. These T cells are present mainly in the intestinal epithelium as intraepithelial lymphocytes (IELs). Although the exact function of γδ T cells (or IELs) is still unknown, it has been proposed that mucosal γδ T cells are involved in innate immune responses by the mucosal immune system.

Common cytokine receptor γ-chain

c). A type I cytokine receptor chain that is shared by the receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.

Epigenetic

This term refers to the heritable, but potentially reversible, states of gene activity that are imposed by the structure of chromatin or covalent modifications of DNA and histones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8, 337–348 (2008). https://doi.org/10.1038/nri2295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing