Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions

Key Points

  • The interleukin-6 (IL-6) and IL-12 family of cytokines has an important role in immune regulation in the context of infection and autoimmunity. This article reviews recent studies that have highlighted the unique roles of two of the newer family members, IL-23 and IL-27.

  • Within this grouping of cytokines, the p40 subunit (IL-12p40) is the only component that is shared by two cytokines (IL-12 and IL-23). However, the receptors for IL-12 and IL-23 share the subunit IL-12Rβ1, and the receptors for IL-6 and IL-27 both contain gp130 (glycoprotein 130).

  • IL-12 has an important role in cell-mediated immunity, which is required for resistance to intracellular infections, but experimental data regarding the contribution of IL-12 to the development of autoimmunity have been contradictory.

  • The finding that IL-23 shares a subunit with IL-12 led to the realization that, at least in experimental models, IL-23 and not IL-12 seems to be the main cytokine involved in the development of autoimmunity.

  • The role of IL-23 in the context of infection and autoimmunity seems to be to stimulate a subset of T cells that do not belong to the canonical T helper 1 (TH1) or TH2-cell subset. Instead, these cells express a unique pattern of pro-inflammatory cytokines that is characterized by the secretion of IL-17, IL-6 and tumour-necrosis factor.

  • Initial studies on the immunobiology of IL-27 focused on its ability to promote the development of CD4+ T cells into TH1 cells. Subsequently, it has become clear that this cytokine also has potent inhibitory effects on various immune-cell populations.

  • It seems probable that understanding how the dysregulated expression of these cytokines contributes to immune-mediated disease will provide new opportunities for the development of novel therapeutics.

Abstract

Understanding the factors that influence T helper 1 (TH1)- and TH2-cell responses has been one of the main focuses of immunology for almost 20 years. Whereas the central role of interleukin-12 (IL-12) in the generation of TH1 cells has long been appreciated, subsequent studies indicated that IL-23 and IL-27, two cytokines that are closely related to IL-12, also regulate TH1-cell responses. However, as discussed in this article, it is now recognized that the ability of IL-23 to stimulate a unique T-cell subset to produce IL-17 has a dominant role in autoimmune inflammation. By contrast, IL-27 has a role in limiting the intensity and duration of adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The interleukin-6 and interleukin-12 family of cytokines and their receptors.
Figure 2: Proposed models for the ontogeny of interleukin-17-producing T cells.
Figure 3: The pro- and anti-inflammatory properties of interleukin-27.
Figure 4: Interleukin-27 regulates the intensity and duration of T-helper-1 cell and T-helper-2 cell responses.

Similar content being viewed by others

References

  1. Mosmann, T. T., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2353 (1986).

    CAS  PubMed  Google Scholar 

  2. Liew, F. Y. TH1 and TH2 cells: a historical perspective. Nature Rev. Immunol. 2, 55–60 (2002).

    Article  CAS  Google Scholar 

  3. Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827–845 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Hsieh, C. S. et al. Devlopment of TH1 CD4+ T cells through IL-12 produced by Listeria induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Manetti, R. et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (TH1)-specific immune responses and inhibits the development of IL-4-producing TH cells. J. Exp. Med. 177, 1199–1204 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Tripp, C. S., Wolf, S. F. & Unanue, E. R. Interleukin 12 and tumor necrosis factor α are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiological antagonist. Proc. Natl Acad. Sci. USA 90, 3725–3729 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gazzinelli, R. T., Hieny, S., Wynn, T. A., Wolf, S. & Sher, A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell deficient hosts. Proc. Natl Acad. Sci. USA 90, 6115–6119 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seder, R. A., Gazzinelli, R., Sher, A. & Paul, W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc. Natl Acad. Sci. USA 90, 10188–10192 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caspi, R. R. IL-12 in autoimmunity. Clin. Immunol. Immunopathol. 88, 4–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Robinson, D. S. & O'Garra, A. Further checkpoints in TH1 development. Immunity 16, 755–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Trinchieri, G., Pflanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19, 641–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  13. Boulay, J. L., O'Shea, J. J. & Paul, W. E. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 19, 159–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoshida, K. et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl Acad. Sci. USA 93, 407–411 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000). This paper describes a crucial series of studies that identify IL-12p40 as a shared component of IL-12 and IL-23, and it highlights some of the similarities in the properties of these cytokines.

    Article  CAS  PubMed  Google Scholar 

  17. Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Sprecher, C. A. et al. Cloning and characterization of a novel class I cytokine receptor. Biochem. Biophys. Res. Commun. 246, 82–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Devergne, O. et al. A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol. 70, 1143–1153 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002). These authors describe the identification of the unique pairing of type I cytokine components that forms IL-27 and the finding that WSX1 is required for signalling.

    Article  CAS  PubMed  Google Scholar 

  21. Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 172, 2225–2231 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Devergne, O., Birkenbach, M. & Kieff, E. Epstein–Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc. Natl Acad. Sci. USA 94, 12041–12046 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fieschi, C. et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor β1 deficiency: medical and immunological implications. J. Exp. Med. 197, 527–535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghilardi, N. et al. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J. Biol. Chem. 277, 16831–16836 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dillon, S. R. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nature Immunol. 5, 752–760 (2004).

    Article  CAS  Google Scholar 

  26. Wirtz, S. et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-κB activation. J. Immunol. 174, 2814–2824 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Smits, H. H. et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced TH1 development. Eur. J. Immunol. 34, 1371–1380 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Schnurr, M. et al. Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood 105, 1582–1589 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Wiekowski, M. T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol. 166, 7563–7570 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Kopp, T. et al. Inflammatory skin disease in K14/p40 transgenic mice: evidence for interleukin-12-like activities of p40. J. Invest. Dermatol. 117, 618–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kopp, T. et al. IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity. J. Immunol. 170, 5438–5444 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  Google Scholar 

  33. Tripp, C. S., Gately, M. K., Hakimi, J., Ling, P. & Unanue, E. R. Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. J. Immunol. 152, 1883–1887 (1994).

    CAS  PubMed  Google Scholar 

  34. Gazzinelli, R. T. et al. Parasite-induced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii. J. Immunol. 153, 2533–2543 (1994).

    CAS  PubMed  Google Scholar 

  35. Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. & Gately, M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177, 1505–1509 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Sypek, J. P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–1802 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. de Jong, R. et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280, 1435–1438 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Altare, F. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1432–1435 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Casanova, J. L. & Abel, L. The human model: a genetic dissection of immunity to infection in natural conditions. Nature Rev. Immunol. 4, 55–66 (2004).

    Article  CAS  Google Scholar 

  40. Chen, Q. et al. Development of TH1-type immune responses requires the type I cytokine receptor TCCR. Nature 407, 916–920 (2000). On the basis of analysis of mice lacking the IL-27-receptor subunit WSX1, this report was the first to link the IL-27 receptor with pro-inflammatory signalling.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida, H. et al. WSX-1 is required for the initiation of TH1 responses and resistance to L. major infection. Immunity 15, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. McIntyre, K. W. et al. Reduced incidence and severity of collagen-induced arthritis in interleukin-12-deficient mice. Eur. J. Immunol. 26, 2933–2938 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Neurath, M. F., Fuss, I., Kelsall, B. L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Leonard, J. P., Waldburger, K. E. & Goldman, S. J. Prevention of expeimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med. 181, 381–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Malfait, A. M. et al. Blockade of IL-12 during the induction of collagen-induced arthritis (CIA) markedly attenuates the severity of the arthritis. Clin. Exp. Immunol. 111, 377–383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferber, I. A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  PubMed  Google Scholar 

  47. Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. & Ramshaw, I. A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  48. Chu, C. Q., Wittmer, S. & Dalton, D. K. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123–128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vermeire, K. et al. Accelerated collagen-induced arthritis in IFN-γ receptor-deficient mice. J. Immunol. 158, 5507–5513 (1997).

    CAS  PubMed  Google Scholar 

  50. Davidson, N. J. et al. IL-12, but not IFN-γ, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J. Immunol. 161, 3143–3149 (1998).

    CAS  PubMed  Google Scholar 

  51. Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 110, 493–497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gran, B. et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol. 169, 7104–7110 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003). Although previous studies had indicated that IL-23 and IL-12 had some properties that were distinct from each other, these authors were the first to associate IL-23 with the production of IL-17.

    Article  CAS  PubMed  Google Scholar 

  54. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003). The initial study with IL-23p19-deficient mice revealed a unique role for IL-23 and not IL-12 in the development of EAE.

    Article  CAS  PubMed  Google Scholar 

  55. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). A crucial series of experiments are described that provided evidence of a unique T-cell subset that responds to IL-23 by producing IL-17 and mediates autoimmune disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl Acad. Sci. USA 100, 5986–5990 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghilardi, N. et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J. Immunol. 172, 2827–2833 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Langrish, C. L. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Taylor, G. A., Feng, C. G. & Sher, A. p47 GTPases: regulators of immunity to intracellular pathogens. Nature Rev. Immunol. 4, 100–109 (2004).

    Article  CAS  Google Scholar 

  62. Mattner, F. et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized TH2 cell response. Eur. J. Immunol. 26, 1553–1559 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Park, A. Y., Hondowicz, B. D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol. 165, 896–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Elkins, K. L., Cooper, A., Colombini, S. M., Cowley, S. C. & Kieffer, T. L. In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Infect. Immun. 70, 1936–1948 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Decken, K. et al. Interleukin-12 is essential for a protective TH1 response in mice infected with Cryptococcus neoformans. Infect. Immun. 66, 4994–5000 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lehmann, J. et al. IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis. J. Immunol. 167, 5304–5315 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Holscher, C. et al. A protective and agonistic function of IL-12p40 in mycobacterial infection. J. Immunol. 167, 6957–6966 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Carr, J. A., Rogerson, J. A., Mulqueen, M. J., Roberts, N. A. & Nash, A. A. The role of endogenous interleukin-12 in resistance to murine cytomegalovirus (MCMV) infection and a novel action for endogenous IL-12 p40. J. Interferon Cytokine Res. 19, 1145–1152 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Lieberman, L. A. et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J. Immunol. 173, 1887–1893 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001). This was the first description of a role for IL-17 in the regulation of neutrophil mobilization and host resistance to infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Happel, K. I. et al. Roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–4436 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kelly, M. N. et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun. 73, 617–621 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hunter, C. A., Abrams, J. S., Beaman, M. H. & Remington, J. S. Cytokine mRNA in the central nervous system of SCID mice infected with Toxoplasma gondii: importance of T-cell-independent regulation of resistance to T. gondii. Infect. Immun. 61, 4038–4044 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Suzuki, Y. et al. Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect. Immun. 65, 2339–2345 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Deckert-Schluter, M., Bluethmann, H., Rang, A., Hof, H. & Schluter, D. Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J. Immunol. 160, 3427–3436 (1998).

    CAS  PubMed  Google Scholar 

  76. Yap, G. S., Scharton-Kersten, T., Charest, H. & Sher, A. Decreased resistance of TNF receptor p55- and p75-deficient mice to chronic toxoplasmosis despite normal activation of inducible nitric oxide synthase in vivo. J. Immunol. 160, 1340–1345 (1998).

    CAS  PubMed  Google Scholar 

  77. Bettelli, E. & Kuchroo, V. K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med. 201, 169–171 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Greenberger, M. J. et al. IL-12 gene therapy protects mice in lethal Klebsiella pneumoniae. J. Immunol. 157, 3006–3012 (1996).

    CAS  PubMed  Google Scholar 

  79. Deng, J. C. et al. STAT4 is a critical mediator of early innate immune responses against pulmonary Klebsiella infection. J. Immunol. 173, 4075–4083 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Tsai, W. C. et al. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun. 65, 1870–1875 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Moore, T. A., Perry, M. L., Getsoian, A. G., Newstead, M. W. & Standiford, T. J. Divergent role of γ interferon in a murine model of pulmonary versus systemic Klebsiella pneumoniae infection. Infect. Immun. 70, 6310–6318 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suzuki, Y., Orelana, M. A., Schreiber, R. D. & Remington, J. S. Inteferon-γ: the major mediator of resistance against Toxoplasma gondii. Science 240, 516–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Cai, G., Radzanowski, T., Villegas, E. N., Kastelein, R. & Hunter, C. A. Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J. Immunol. 165, 2619–2627 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Scharton-Kersten, T. M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J. Exp. Med. 185, 1261–1273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Teunissen, M. B., Koomen, C. W., de Waal Malefyt, R., Wierenga, E. A. & Bos, J. D. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111, 645–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Takeda, A. et al. Role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial TH1 commitment. J. Immunol. 170, 4886–4890 (2003). This is the initial description of the signalling components that are used by IL-27 and that could promote T H 1-cell responses.

    Article  CAS  PubMed  Google Scholar 

  87. Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R. A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-Bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F. J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl Acad. Sci. USA 100, 15047–15052 (2003). This paper provides insights into the ability of IL-27 to enhance the polarization of CD4+ T cells to a T H 1-cell phenotype and shows that IL-27 can inhibit the expression of GATA3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kamiya, S. et al. An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J. Immunol. 173, 3871–3877 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Artis, D. et al. Early IL-4 production governs the requirement for IL-27–WSX-1 signaling in the development of protective TH1 cytokine responses following Leishmania major infection. J. Immunol. 172, 4672–4675 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Zahn, S. et al. Impaired TH1 responses in mice deficient in Epstein–Barr virus-induced gene 3 and challenged with physiological doses of Leishmania major. Eur. J. Immunol. 35, 1106–1112 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Villarino, A. V., Huang, E. & Hunter, C. A. Understanding the pro- and anti-inflammatory properties of IL-27. J. Immunol. 173, 715–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Chiyo, M. et al. Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int. J. Cancer 115, 437–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Matsui, M. et al. Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27, for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J. Virol. 78, 9093–9104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salcedo, R. et al. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J. Immunol. 173, 7170–7182 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Hisada, M. et al. Potent antitumor activity of interleukin-27. Cancer Res. 64, 1152–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Larousserie, F. et al. Analysis of interleukin-27 (EBI3/p28) expression in Epstein–Barr virus- and human T-cell leukemia virus type 1-associated lymphomas: heterogeneous expression of EBI3 subunit by tumoral cells. Am. J. Pathol. 166, 1217–1228 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goldberg, R., Wildbaum, G., Zohar, Y., Maor, G. & Karin, N. Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the p28 subunit of IL-27. J. Immunol. 173, 1171–1178 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Goldberg, R. et al. Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J. Immunol. 173, 6465–6471 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Nieuwenhuis, E. E. et al. Disruption of T helper 2-immune responses in Epstein–Barr virus-induced gene 3-deficient mice. Proc. Natl Acad. Sci. USA 99, 16951–16956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hamano, S. et al. WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19, 657–667 (2003). This is one of the initial studies that showed that IL-27-receptor-deficient mice develop exaggerated T H 1- and T H 2-cell responses during infection.

    Article  CAS  PubMed  Google Scholar 

  102. Artis, D. et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J. Immunol. 173, 5626–5634 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Holscher, C. et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J. Immunol. 174, 3534–3544 (2005).

    Article  PubMed  Google Scholar 

  104. Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19, 645–655 (2003). This was the first report to propose an anti-inflammatory function for IL-27 in the context of infection.

    Article  CAS  PubMed  Google Scholar 

  105. Yamanaka, A. et al. Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells in concanavalin A-induced hepatitis. J. Immunol. 172, 3590–3596 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Pearl, J. E. et al. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J. Immunol. 173, 7490–7496 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Villarino, A. V. et al. Positive and negative regulation of the IL-27 receptor during lymphoid cell activation. J. Immunol. 174, 7684–7691 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Bancroft, A. J., Humphreys, N. E., Worthington, J. J., Yoshida, H. & Grencis, R. K. WSX-1: a key role in induction of chronic intestinal nematode infection. J. Immunol. 172, 7635–7641 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Paul, W. E. & Seder, R. A. Lymphocyte responses and cytokines. Cell 76, 241–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Barczyk, A., Pierzchala, W. & Sozanska, E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med. 97, 726–733 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Casado, B., Pannell, L. K., Viglio, S., Iadarola, P. & Baraniuk, J. N. Analysis of the sinusitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization-quadrupole time of flight-tandem mass spectrometry. Electrophoresis 25, 1386–1393 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Schmidt, C. et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm. Bowel Dis. 11, 16–23 (2005).

    Article  PubMed  Google Scholar 

  115. Lee, E. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125–130 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McAllister, F. et al. Role of IL-17A, IL-17F and the IL-17 receptor in regulating Gro-α and G-CSF in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol. (in the press).

  117. Mannon, P. J. et al. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med. 351, 2069–2079 (2004). This paper describes the results of the clinical trial using IL-12p40-specific antibodies, which indicate that this cytokine component is a viable clinical target.

    Article  CAS  PubMed  Google Scholar 

  118. Gardam, M. A. et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect. Dis. 3, 148–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Larousserie, F. et al. Expression of IL-27 in human TH1-associated granulomatous diseases. J. Pathol. 202, 164–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Omata, F., Birkenbach, M., Matsuzaki, S., Christ, A. D. & Blumberg, R. S. The expression of IL-12 p40 and its homologue, Epstein–Barr virus-induced gene 3, in inflammatory bowel disease. Inflamm. Bowel Dis. 7, 215–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Lenardo, M. J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Hodge-Dufour, J. et al. Inhibition of interferon γ induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor. Proc. Natl Acad. Sci. USA 95, 13806–13811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cope, A. P. et al. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signalling. J. Exp. Med. 185, 1573–1584 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Diehl, S. et al. Inhibition of TH1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Cousens, L. P., Orange, J. S., Su, H. C. & Biron, C. A. Interferon-α/β inhibition of interleukin 12 and interferon-γ production in vitro during viral infection. Proc. Natl Acad. Sci. USA 94, 634–639 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lee, C. K., Smith, E., Gimeno, R., Gertner, R. & Levy, D. E. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-γ. J. Immunol. 164, 1286–1292 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Tebbutt, N. C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nature Med. 8, 1089–1097 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Ishida, H., Hastings, R., Kearney, J. & Howard, M. Continuous anti-interleukin 10 antibody administration depletes mice of Ly-1 B cells but not conventional B cells. J. Exp. Med. 175, 1213–1220 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Cai, G., Kastelein, R. A. & Hunter, C. A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-γ when combined with IL-18. Eur. J. Immunol. 29, 2658–2665 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Shibata, Y. et al. Immunoregulatory roles of IL-10 in innate immunity: IL-10 inhibits macrophage production of IFN-γ-inducing factors but enhances NK cell production of IFN-γ. J. Immunol. 161, 4283–4288 (1998).

    CAS  PubMed  Google Scholar 

  131. Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge the support of friends and colleagues A. Villarino, L. Lieberman, D. Artis, C. Saris, R. Kastelein, F. de Sauvage, H. Yoshida, J. Kolls, N. Ghilardi, G. Trinchieri, J. O'Shea and P. Scott, who have provided crucial insights, and shared unpublished data in this area of research. C.A.H. is supported by a grant from the National Institutes of Health (USA).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Christopher Hunter's research group has received support and reagents from Amgen Inc., DNAX Research, Inc. and Genentech, Inc. and has a patent pending on the use of interleukin-27 for modulation of the immune response.

Related links

Related links

DATABASES

Entrez Gene

EBI3

gp130

IL-6

IL-6Rα

IL-12p35

IL-12p40

IL-12Rβ1

IL-12Rβ2

IL-17A

IL-17F

IL-23p19

IL-23R

IL-27p28

WSX1

Glossary

FOUR-HELIX BUNDLE

A structural motif in proteins. It consists of four α-helices packed together.

HAEMATOPOIETIN-RECEPTOR DOMAIN

A conserved structural feature of the receptors for type I cytokines. It comprises 200 amino acids that are derived from a tandem of two fibronectin-like domains. The haematopoietin-receptor domain contributes to the cytokine-binding module of these receptors.

ACUTE-PHASE RESPONSE

The early immune response to infection, which results in the production of cytokines and other mediators and in an increase in the number of peripheral leukocytes.

ECZEMATOUS SKIN DISEASE

A clinical process that is associated with severe pathological changes to the skin, which are characterized by redness, oozing, crusting and loss of pigmentation. Histologically, this is characterized by epidermal changes of intracellular oedema, spongiosis or vesiculation.

JAK-STAT

(Janus activated kinase–signal transducer and activator of transcription). An evolutionarily conserved signalling pathway that is associated with type I and type II cytokines. Receptor ligation leads to a series of events that includes the recruitment and activation of JAKs and the phosphorylation of various STATs, which in turn transactivate a variety of genes involved in cell differentiation, survival, apoptosis and proliferation.

EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

(EAE). An experimental model of the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

COLLAGEN-INDUCED ARTHRITIS

(CIA). An experimental model of rheumatoid arthritis. Arthritis is induced by immunization of susceptible animals with type II collagen.

DELAYED-TYPE HYPERSENSITIVITY

(DTH). A T cell-mediated immune response marked by monocyte and/or macrophage infiltration and activation. DTH skin tests have classically been used for the diagnosis of infection with intracellular pathogens such as Mycobacterium tuberculosis and as a measure of the vigour of the cellular immune system. Classic DTH responses to intracellular pathogens are thought to depend on CD4+ T cells producing a T helper 1 profile of cytokines (that is, interferon-γ and lymphotoxin-α).

T-BET

A member of the Tbox family of transcription factors. It is a master switch in the development of T helper 1 (TH1)-cell responses, through its ability to regulate expression of the interleukin-12 receptor, inhibit signals that promote TH2-cell development and promote the production of interferon-γ.

OXAZOLONE-INDUCED COLITIS

A mouse model of human ulcerative colitis that depends on invariant natural killer T cells and type 2 cytokines.

INVARIANT NATURAL KILLER T CELLS

(Invariant NKT cells). Lymphocytes that express a particular variable gene segment, Vα14 (in mice) and Vα24 (in humans), precisely rearranged to a particular J (joining) gene segment to yield Tcell receptor α-chains with an invariant sequence. Typically, these cells co-express cell-surface markers that are encoded by the NK locus, and they are activated by recognition of CD1d, particularly when α-galactosylceramide is bound in the groove of CD1d.

SARCOIDOSIS

An idiopathic fibrotic disease of humans that has systemic effects. Its pathology is poorly understood, and there are limited treatment options.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, C. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5, 521–531 (2005). https://doi.org/10.1038/nri1648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing