Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40

Key Points

  • Conventional immunotherapies for autoimmune, allergic and inflammatory diseases prevent disease symptoms by inducing immunosuppression, but at the same time, cause opportunistic infections and cancer. Therefore, an ideal immunotherapeutic strategy for a T-cell-mediated disease would directly target the antigen-specific T cells that are responsible for the disease pathogenesis.

  • Optimal activation of naive T cells requires not only interaction between the T-cell receptor and antigen–MHC complexes, but also co-stimulation provided by co-stimulatory ligands expressed by antigen-presenting cells. Among several co-stimulatory receptors, signals through CD28 and OX40 are indispensable for T cells to respond to antigen and for the generation of antigen-specific memory T cells.

  • Targeting the T-cell co-stimulatory molecules CD28 and OX40 is a promising strategy to control T-cell-mediated immune disorders, by regulating the T cells that cause disease. Whereas CD28 blockade mainly suppresses the generation of effector T cells from naive T cells, OX40 blockade inhibits the survival and activation of effector T cells generated from either naive or memory T cells in many models.

  • As CD28 blockade is unable to effectively suppress effector T-cell function or reactivation of memory T cells, this blockade might be insufficient to prevent ongoing symptoms in certain T-cell-mediated diseases. By contrast, blockade of OX40–OX40 ligand (OX40L) interactions alone inhibits ongoing effector T-cell responses, and therefore might be a favourable strategy in certain clinical settings for T-cell-mediated diseases.

  • The presence of OX40+ lymphocytes and OX40L+ cells at the sites of inflammation in T-cell-mediated disorders, such as autoimmunity, allergic and inflammatory diseases, and graft-versus-host disease, indicates the possible involvement of OX40–OX40L interactions in the pathogenesis of these diseases. In fact, targeting OX40 using OX40-specific monoclonal antibodies, OX40–immunoglobulin fusion proteins or OX40-specific immunotoxin is therapeutic in terms of reducing even ongoing disease symptoms in several animal models of these diseases.

  • Targeting OX40 in mouse models of disease is effective not only for autoimmune and allergic diseases, but also for tissue inflammation during viral infection without delaying viral clearance, indicating additional benefits of targeting OX40 as an anti-inflammatory therapy, as well as an immunosuppressive regimen.

  • Deliberate ligation of OX40 induces favourable antitumour effects in cancer-bearing hosts by enhancing effector T-cell functions, and can be augmented with protocols that involve other stimulatory molecules, such as granulocyte–macrophage colony-stimulating factor, 4-1BB-specific antibody and IL-12.

  • Therapeutic reagents that target OX40 and OX40L will soon be tested in phase I clinical trials for T-cell-mediated diseases and patients with certain types of cancer.

Abstract

An emerging immunotherapeutic strategy for T-cell-mediated diseases is to directly target antigen-specific T cells that are responsible for the clinical effects, without causing general widespread immunosuppression. A T-cell co-stimulatory molecule, OX40, which is transiently expressed after antigen recognition, fits these criteria in several immune-mediated diseases. In vivo blockade of OX40 signalling specifically suppresses the function of recently activated autoantigen-specific T cells, leading to inhibition of autoimmune disease without severe immunosuppression. In addition, deliberate ligation of OX40 in tumour-bearing hosts enhances anticancer immunity. We discuss how targeting OX40 is potentially an ideal strategy for immune-based therapies in several human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles for OX40–OX40L interactions in T-cell function.
Figure 2: Therapeutic intervention in animals with experimental autoimmune encephalomyelitis by targeting OX40+ T cells at the site of inflammation.
Figure 3: Ligation of OX40 in tumour-bearing mice enhances antitumour immunity, leading to therapeutic effects.

Similar content being viewed by others

References

  1. Mallett, S., Fossum, S. & Barclay, A. N. Characterization of the MRC OX40 antigen of activated CD4+ T lymphocytes — a molecule related to nerve growth factor receptor. EMBO J. 9, 1063–1068 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calderhead, D. M. et al. Cloning of mouse OX40: a T cell activation marker that may mediate T–B cell interactions. J. Immunol. 151, 5261–5271 (1993).

    CAS  PubMed  Google Scholar 

  3. Paterson, D. J. et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4+ T blasts. Mol. Immunol. 24, 1281–1290 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey, W. R., Fagnoni, F. F., Harara, M. A., Buck, D. & Engleman, E. G. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J. Exp. Med. 180, 757–762 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Baum, P. R. et al. Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J. 13, 3992–4001 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gramaglia, I., Weinberg, A. D., Lemon, M. & Croft, M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J. Immunol. 161, 6510–6517 (1998).

    CAS  PubMed  Google Scholar 

  7. Akiba, H. et al. CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J. Immunol. 162, 7058–7066 (1999).

    CAS  PubMed  Google Scholar 

  8. Tanaka, Y., Inoi, T., Tozawa, H., Yamamoto, N. & Hinuma, Y. A glycoprotein antigen detected with new monoclonal antibodies on the surface of human lymphocytes infected with human T-cell leukemia virus type-I (HTLV-I). Int. J. Cancer 36, 549–555 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Miura, S. et al. Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax. Mol. Cell. Biol. 11, 1313–1325 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stuber, E., Neurath, M., Calderhead, D., Fell, H. P. & Strober, W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2, 507–521 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Ohshima, Y. et al. Expression and function of OX40 ligand on human dendritic cells. J. Immunol. 159, 3838–3848 (1997).

    CAS  PubMed  Google Scholar 

  12. Weinberg, A. D., Wegmann, K. W., Funatake, C. & Whitham, R. H. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J. Immunol. 162, 1818–1826 (1999). The first description of both OX40 and OX40L expression by inflammatory cells in a target organ of autoimmunity. The study also shows that OX40L expressed by APCs from the inflammatory site delivers a potent pro-inflammatory signal to T cells that can be blocked by an OX40–immunoglobulin fusion protein both in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  13. Sato, T. et al. Consequences of OX40–OX40 ligand interactions in Langerhans cell function: enhanced contact hypersensitivity responses in OX40L-transgenic mice. Eur. J. Immunol. 32, 3326–3335 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Imura, A. et al. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J. Exp. Med. 183, 2185–2195 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Pippig, S. D. et al. Robust B cell immunity but impaired T cell proliferation in the absence of CD134 (OX40). J. Immunol. 163, 6520–6529 (1999).

    CAS  PubMed  Google Scholar 

  16. Takasawa, N. et al. Expression of gp34 (OX40 ligand) and OX40 on human T cell clones. Jpn. J. Cancer Res. 92, 377–382 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, H. C. & Klein, J. R. Multiple levels of activation of murine CD8+ intraepithelial lymphocytes defined by OX40 (CD134) expression: effects on cell-mediated cytotoxicity, IFN-γ, and IL-10 regulation. J. Immunol. 167, 6717–6723 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, A. I. et al. OX40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11, 689–698 (1999). The first group to demonstrate in vivo roles of OX40L in APC function by using OX40L-deficient mice (see also reference 19).

    Article  CAS  PubMed  Google Scholar 

  19. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gramaglia, I. et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000). This report provides the first evidence that OX40 signals promote the generation of CD4+ memory T cells (see also reference 21).

    Article  CAS  PubMed  Google Scholar 

  21. Maxwell, J. R., Weinberg, A., Prell, R. A. & Vella, A. T. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol. 164, 107–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rogers, P. R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Weinberg, A. D. et al. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nature Med. 2, 183–189 (1996). The first description that targeting OX40+ T cells by selective depletion can ameliorate clinical signs of autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  24. Stuber, E., Von Freier, A., Marinescu, D. & Folsch, U. R. Involvement of OX40–OX40L interactions in the intestinal manifestations of the murine acute graft-versus-host disease. Gastroenterology 115, 1205–1215 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Higgins, L. M. et al. Regulation of T cell activation in vitro and in vivo by targeting the OX40–OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40–IgG fusion protein, but not with an OX40 ligand–IgG fusion protein. J. Immunol. 162, 486–493 (1999).

    CAS  PubMed  Google Scholar 

  26. Yoshioka, T. et al. Contribution of OX40–OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur. J. Immunol. 30, 2815–2823 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weinberg, A. D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000). The first demonstration that an agonist OX40-binding reagent can enhance antitumour immunity, leading to beneficial therapeutic effects in tumour-bearing mice.

    Article  CAS  PubMed  Google Scholar 

  29. Tsukada, N. et al. Blockade of CD134 (OX40)–CD134L interaction ameliorates lethal acute graft-versus-host disease in a murine model of allogeneic bone marrow transplantation. Blood 95, 2434–2439 (2000).

    CAS  PubMed  Google Scholar 

  30. Nohara, C. et al. Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J. Immunol. 166, 2108–2115 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Malmstrom, V. et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J. Immunol. 166, 6972–6981 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Murata, K. et al. Constitutive OX40–OX40 ligand interaction induces autoimmune-like diseases. J. Immunol. 169, 4628–4636 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, L. et al. In vitro and in vivo activities of OX40 (CD134)–IgG fusion protein isoforms with different levels of immune-effector functions. J. Leukoc. Biol. 72, 522–529 (2002).

    CAS  PubMed  Google Scholar 

  34. Blazar, B. R. et al. Ligation of OX40 (CD134) regulates graft-versus-host disease (GVHD) and graft rejection in allogeneic bone marrow transplant recipients. Blood 101, 3741–3748 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Totsuka, T. et al. Therapeutic effect of anti-OX40L and anti-TNF-α Mbs in a murine model of chronic colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G595–G603 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Salek-Ardakani, S. et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198, 315–324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Humphreys, I. R. et al. A critical role for OX40 in T cell-mediated immunopathology during lung viral infection. J. Exp. Med. 198, 1237–1242 (2003). This paper provides evidence that OX40 blockade is therapeutic for virus-infection-induced lung inflammation without any untoward immunosuppression. It proposes a new therapy setting, targeting OX40 for anti-inflammatory effects rather than immunosuppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Obermeier, F. et al. OX40–OX40L interaction induces the expression of CXCR5 and contributes to chronic colitis induced by dextran sulfate sodium in mice. Eur. J. Immunol. 33, 3265–3274 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Demirci, G. et al. Critical role of OX40 in CD28 and CD154-independent rejection. J. Immunol. 172, 1691–1698 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Yuan, X. et al. The role of the CD134–CD134 ligand costimulatory pathway in alloimmune responses in vivo. J. Immunol. 170, 2949–2955 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ishii, N. et al. OX40 (CD134) and OX40 ligand interaction plays an adjuvant role during in vivo TH2 responses. Eur. J. Immunol. 33, 2372–2381 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Humphreys, I. R. et al. OX40 ligation on activated T cells enhances the control of Cryptococcus neoformans and reduces pulmonary eosinophilia. J. Immunol. 170, 6125–6132 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Hoshino, A. et al. Critical role for OX40 ligand in the development of pathogenic TH2 cells in a murine model of asthma. Eur. J. Immunol. 33, 861–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Watts, T. H. & DeBenedette, M. A. T cell co-stimulatory molecules other than CD28. Curr. Opin. Immunol. 11, 286–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Coyle, A. J. & Gutierrez-Ramos, J. C. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nature Immunol. 2, 203–209 (2001).

    Article  CAS  Google Scholar 

  46. Janeway, C. A. Jr & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Sharpe, A. H. & Freeman, G. J. The B7-CD28 superfamily. Nature Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  Google Scholar 

  49. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nature Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  Google Scholar 

  50. Weinberg, A. D., Evans, D. E., Thalhofer, C., Shi, T. & Prell, R. A. The generation of T cell memory: a review describing the molecular and cellular events following OX40 (CD134) engagement. J. Leukoc. Biol. (in the press).

  51. Brocker, T. et al. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur. J. Immunol. 29, 1610–1616 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Linton, P. J. et al. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and TH2 cytokine secretion in vivo. J. Exp. Med. 197, 875–883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hendriks, J., Xiao, Y. & Borst, J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369–1380 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, J. et al. The costimulation-regulated duration of PKB activation controls T cell longevity. Nature Immunol. 5, 150–158 (2004).

    Article  CAS  Google Scholar 

  55. Kopf, M. et al. OX40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999). This paper provides evidence that absence of OX40 specifically suppresses CD4+ effector T-cell function and tissue infiltration during viral infections.

    Article  CAS  PubMed  Google Scholar 

  56. Corry, D. B., Reiner, S. L., Linsley, P. S. & Locksley, R. M. Differential effects of blockade of CD28-B7 on the development of TH1 or TH2 effector cells in experimental leishmaniasis. J. Immunol. 153, 4142–4148 (1994).

    CAS  PubMed  Google Scholar 

  57. Schweitzer, A. N. & Sharpe, A. H. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of TH2 but not TH1 cytokine production. J. Immunol. 161, 2762–2771 (1998).

    CAS  PubMed  Google Scholar 

  58. Tang, A., Judge, T. A., Nickoloff, B. J. & Turka, L. A. Suppression of murine allergic contact dermatitis by CTLA4Ig. Tolerance induction of TH2 responses requires additional blockade of CD40-ligand. J. Immunol. 157, 117–125 (1996).

    CAS  PubMed  Google Scholar 

  59. London, C. A., Lodge, M. P. & Abbas, A. K. Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Kim, M. Y. et al. CD4+CD3 accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, P. C. Antibody therapy for rheumatoid arthritis. Curr. Opin. Pharmacol. 3, 323–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Weinberg, A. D. et al. Target organ-specific up-regulation of the MRC OX-40 marker and selective production of TH1 lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune encephalomyelitis. J. Immunol. 152, 4712–4721 (1994).

    CAS  PubMed  Google Scholar 

  64. Flugel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Ndhlovu, L. C., Ishii, N., Murata, K., Sato, T. & Sugamura, K. Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J. Immunol. 167, 2991–2999 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Carboni, S. et al. CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J. Neuroimmunol. 145, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Martin-Orozco, N. et al. Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand. J. Immunol. 171, 6954–6960 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Lamb, L. S. Jr et al. Expression of CD134 (0X-40) on T cells during the first 100 days following allogeneic bone marrow transplantation as a marker for lymphocyte activation and therapy-resistant graft-versus-host disease. Cytometry 38, 238–243 (1999).

    Article  PubMed  Google Scholar 

  69. Gadisseur, A. P. et al. Expression of T cell activation antigen CD134 (OX40) has no predictive value for the occurrence or response to therapy of acute graft-versus-host disease in partial T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 23, 1013–1017 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Kotani, A. et al. Correlation of peripheral blood OX40+(CD134+) T cells with chronic graft-versus-host disease in patients who underwent allogeneic hematopoietic stem cell transplantation. Blood 98, 3162–3164 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  72. Takeda, I. et al. Distinct roles for the OX40–OX40L interaction in regulatory and non-regulatory T cells. J. Immunol. 172, 3580–3589 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Souza, H. S., Elia, C. C., Spencer, J. & MacDonald, T. T. Expression of lymphocyte–endothelial receptor–ligand pairs, α4β7/MAdCAM-1 and OX40–OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 45, 856–863 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stuber, E. et al. The expression of OX40 in immunologically mediated diseases of the gastrointestinal tract (celiac disease, Crohn's disease, ulcerative colitis). Eur. J. Clin. Invest. 30, 594–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Furtado, G. C., Curotto de Lafaille, M. A. Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Targan, S. R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn's disease. Crohn's Disease cA2 Study Group. N. Engl. J. Med. 337, 1029–1035 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Cohen, R. D. Infliximab in ulcerative colitis: is there a placebo (effect) in the house? Gastroenterology 124, 1990–1991 (2003).

    Article  PubMed  Google Scholar 

  80. Jember, A. G., Zuberi, R., Liu, F. T. & Croft, M. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J. Exp. Med. 193, 387–392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arestides, R. S. et al. Costimulatory molecule OX40L is critical for both TH1 and TH2 responses in allergic inflammation. Eur. J. Immunol. 32, 2874–2880 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Lumsden, J. M., Roberts, J. M., Harris, N. L., Peach, R. J. & Ronchese, F. Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J. Immunol. 164, 79–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kaleeba, J. A., Offner, H., Vandenbark, A. A., Lublinski, A. & Weinberg, A. D. The OX-40 receptor provides a potent co-stimulatory signal capable of inducing encephalitogenicity in myelin-specific CD4+ T cells. Int. Immunol. 10, 453–461 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Staveley-O'Carroll, K. et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc. Natl Acad. Sci. USA 95, 1178–1183 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Prell, R. A. et al. OX40-mediated memory T cell generation is TNF receptor-associated factor 2 dependent. J. Immunol. 171, 5997–6005 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Evans, D. E., Prell, R. A., Thalhofer, C. J., Hurwitz, A. A. & Weinberg, A. D. Engagement of OX40 enhances antigen-specific CD4+ T cell mobilization/memory development and humoral immunity: comparison of anti-OX-40 with anti-CTLA-4. J. Immunol. 167, 6804–6811 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Bansal-Pakala, P., Jember, A. G. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med. 7, 907–912 (2001). The authors provide the first evidence that OX40 signals can break T-cell tolerance that is induced by treatment with soluble peptide antigen.

    Article  CAS  PubMed  Google Scholar 

  89. Kjaergaard, J. et al. Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res. 60, 5514–5521 (2000).

    CAS  PubMed  Google Scholar 

  90. Kjaergaard, J. et al. Augmentation versus inhibition: effects of conjunctional OX-40 receptor monoclonal antibody and IL-2 treatment on adoptive immunotherapy of advanced tumor. J. Immunol. 167, 6669–6677 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Pan, P. Y., Zang, Y., Weber, K., Meseck, M. L. & Chen, S. H. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol. Ther. 6, 528–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Morris, A. et al. Induction of anti-mammary cancer immunity by engaging the OX-40 receptor in vivo. Breast Cancer Res. Treat. 67, 71–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Weinberg, A. D. et al. OX-40 antibody enhances for autoantigen specific Vβ8.2+ T cells within the spinal cord of Lewis rats with autoimmune encephalomyelitis. J. Neurosci. Res. 43, 42–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Buenafe, A. C., Weinberg, A. D., Culbertson, N. E., Vandenbark, A. A. & Offner, H. Vβ CDR3 motifs associated with BP recognition are enriched in OX-40+ spinal cord T cells of Lewis rats with EAE. J. Neurosci. Res. 44, 562–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Gri, G., Gallo, E., Di Carlo, E., Musiani, P. & Colombo, M. P. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-APC signaling to boost the host T cell antitumor response. J. Immunol. 170, 99–106 (2003). The first description that the combination of a cytokine-secreting (GM-CSF) tumour and OX40 ligation in vivo can synergize to enhance anticancer immunity in tumour-bearing mice.

    Article  CAS  PubMed  Google Scholar 

  96. Andarini, S. et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res. 64, 3281–3287 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Uzzo, R. G. et al. Alterations in NF-κB activation in T lymphocytes of patients with renal cell carcinoma. J. Natl Cancer Inst. 91, 718–721 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Uzzo, R. G. et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin. Cancer Res. 5, 1219–1229 (1999).

    CAS  PubMed  Google Scholar 

  99. Finke, J. H. et al. Loss of T-cell receptor ζ chain and p56lck in T-cells infiltrating human renal cell carcinoma. Cancer Res. 53, 5613–5616 (1993).

    CAS  PubMed  Google Scholar 

  100. Finke, J. H. et al. Tumor-induced sensitivity to apoptosis in T cells from patients with renal cell carcinoma: role of nuclear factor-κB suppression. Clin. Cancer Res. 7, S940–S946 (2001).

    Google Scholar 

  101. Ramstad, T., Lawnicki, L., Vetto, J. & Weinberg, A. Immunohistochemical analysis of primary breast tumors and tumor-draining lymph nodes by means of the T-cell costimulatory molecule OX-40. Am. J. Surg. 179, 400–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Grosenbach, D. W., Schlom, J., Gritz, L., Gomez Yafal, A. & Hodge, J. W. A recombinant vector expressing transgenes for four T-cell costimulatory molecules (OX40L, B7-1, ICAM-1, LFA-3) induces sustained CD4+ and CD8+ T-cell activation, protection from apoptosis, and enhanced cytokine production. Cell. Immunol. 222, 45–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Van den Brande, J. M. et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterology 124, 1774–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Ekkens, M. J. et al. The role of OX40 ligand interactions in the development of the TH2 response to the gastrointestinal nematode parasit Heligmosomoides polygyrus. J. Immunol. 170, 384–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Brugnoni, D., Bettinardi, A., Malacarne, F., Airo, P. & Cattaneo, R. CD134/OX40 expression by synovial fluid CD4+ T lymphocytes in chronic synovitis. Br. J. Rheumatol. 37, 584–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Giacomelli, R. et al. T lymphocytes in the synovial fluid of patients with active rheumatoid arthritis display CD134/OX40 surface antigen. Clin. Exp. Rheumatol. 19, 317–320 (2001).

    CAS  PubMed  Google Scholar 

  109. Tateyama, M. et al. Expression of OX40 in muscles of polymyositis and granulomatous myopathy. J. Neurol. Sci. 194, 29–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Petty, J. K., He, K., Corless, C. L., Vetto, J. T. & Weinberg, A. D. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). Am. J. Surg. 183, 512–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Tittle, T. V., Weinberg, A. D., Steinkeler, C. N. & Maziarz, R. T. Expression of the T-cell activation antigen, OX-40, identifies alloreactive T cells in acute graft-versus-host disease. Blood 89, 4652–4658 (1997).

    CAS  PubMed  Google Scholar 

  112. Caccavelli, L. et al. Normal IgG protects against acute graft-versus-host disease by targeting CD4+CD134+ donor alloreactive T cells. Eur. J. Immunol. 31, 2781–2790 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L.C. Ndhlovu, J. Borst and N. Killeen for critical reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Sugamura.

Ethics declarations

Competing interests

Andrew D. Weinberg is the inventor on three United States patents pertaining to OX40: the patent numbers are 5,759,546; 6,312,700 and 6,566,082. They relate to using reagents to OX40 to inhibit autoimmune disease, diagnose T-cell disorders and enhance antigen-specific immune responses by OX40 ligation in vivo.

Related links

Related links

DATABASES

Entrez Gene

4-1BB

CD4

CD8

CD28

CD80

CD86

CTLA4

GM-CSF

IFN-γ

IL-12

OX40

OX40L

TNF

Glossary

IMMUNOTOXIN

An antibody that is chemically or genetically modified to produce a hybrid molecule that has an antibody-binding domain and toxin that can kill a cell once internalized.

CONTACT HYPERSENSITIVITY

A delayed-type hypersensitivity in which T cells respond to antigens that are introduced by contact with the skin. In common animal models, hapten treatment of the skin induces this hypersensitivity, which is measured by swelling of the sensitized skin, such as ear thickness.

EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

(EAE). An experimental model for the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin antigen or peptides that are derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

INFLAMMATORY BOWEL DISEASE

(IBD). A chronic condition of the intestine that is characterized by severe inflammation and mucosal destruction. The most common forms in humans are ulcerative colitis and Crohn's disease. Animal models indicate that they result from dysregulation of the local immune response to normally harmless commensal bacteria.

GRAFT-VERSUS-HOST DISEASE

(GVHD). Tissue damage in a recipient of allogeneic transplanted tissue (usually a bone-marrow transplant) that results from the activity of donor T cells that recognize the recipient's tissue as foreign. GVHD varies markedly in severity, but can be life-threatening in severe cases. Typically, damage to the skin and gut mucosa leads to clinical manifestations.

BLOOD–BRAIN BARRIER

The central nervous system (CNS) is known to be an immune-privileged site such that no lymphocytes can cross from the blood to the brain. In certain diseases, such as multiple sclerosis, the endothelial-cell wall that protects this barrier is broken down and, when this occurs, lymphocytes can pass freely into the CNS.

NON-OBESE DIABETIC MICE

(NOD mice). A strain of mice that normally develops idiopathic autoimmune diabetes that closely resembles type 1 diabetes in humans. The target antigen(s) recognized by the pathogenic CD4+ T cells that initiate disease is expressed by pancreatic islet cells, but its identity is unknown.

GRAFT VERSUS LEUKAEMIA

(GVL). Hosts with leukaemia who receive an allogeneic bone-marrow transplant have far fewer disease relapses than individuals obtaining autologous bone-marrow transplants. This is due to the transplanted T cells recognizing alloantigens expressed by the leukaemia.

CD4+CD25+ REGULATORY T CELLS

(TReg cells). A specialized subset of CD4+ T cells that can suppress other T-cell responses. These cells are characterized by expression of the interleukin-2 receptor α-chain (CD25) and some T-cell-activation markers. The transcription factor FOXP3 is specifically expressed by these cells and contributes to the suppressive function.

IMMUNOGENIC TUMOURS

The immunogenicity of a tumour is defined by its ability to enhance immune responses after irradiation and subcutaneous vaccination into naive mice. Highly immunogenic tumours will allow 100% of the vaccinated hosts to be protected against live tumour challenge 30 days after immunization, whereas less immunogenic tumours elicit poorer immune responses, resulting in 50% or less of hosts that succumb to live tumour challenge after immunization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugamura, K., Ishii, N. & Weinberg, A. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol 4, 420–431 (2004). https://doi.org/10.1038/nri1371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing