Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potential cardioprotective actions of no-releasing aspirin

Key Points

  • Aspirin remains one of the most commonly used drugs for the treatment of pain, fever and inflammation, and is increasingly used to reduce the risk of heart attacks and strokes.

  • A major drawback to the use of aspirin is its ability to cause ulcers in the stomach.

  • A new type of aspirin has been developed that consists of aspirin linked to a nitric oxide (NO)-releasing moiety — NO-aspirin.

  • In human and experimental studies, NO-aspirin does not cause damage in the stomach or intestine, in contrast to aspirin. However, NO-aspirin can still suppress inflammation and platelet aggregation.

  • NO-aspirin has been shown to have beneficial effects, often superseding those of aspirin, in experimental models of myocardial infarction (heart attack), cardiac ischaemia–reperfusion and coronary restenosis.

  • NO-aspirin has been shown to reduce blood pressure in experimental models of hypertension (high blood pressure), in contrast to conventional nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors.

  • NO-aspirin, unlike the parent drug, is able to potently suppress the production of several pro-inflammatory cytokines.

  • NO-aspirin produces its effects through various mechanisms, not all of which are related to its ability to inhibit cyclooxygenase activity and release nitric oxide.

  • NO-aspirin could represent an important advance in the prevention of serious cardiovascular events, such as heart attacks and stroke, being safer and more potent than aspirin.

Abstract

The use of low doses of aspirin on a daily basis has increased greatly in the past 20 years, based on observations that it can significantly reduce the risk of heart attacks and strokes. However, aspirin can also cause severe damage to the stomach. A modified version of aspirin that releases nitric oxide has been developed that seems to offer important advantages over its 103-year-old parent — namely, improved protection for the heart without the unwanted effects on the stomach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of aspirin and NCX4016.
Figure 2: Metabolism of NO-NSAIDs.
Figure 3: Intracellular formation of nitric oxide (NO) from NO-aspirin.
Figure 4: Inhibition of cell proliferation by nitric oxide.
Figure 5: Inhibition of cytokine synthesis by NO-aspirin.
Figure 6: Anti-apoptotic effects of NO-aspirin.

Similar content being viewed by others

References

  1. Vane, J. R. The fight against rheumatism: from willow bark to COX-1 sparing drugs. J. Physiol. Pharmacol. 51, 573–586 (2000).

    CAS  PubMed  Google Scholar 

  2. Patrono, C. Aspirin as an antiplatelet drug. N. Engl. J. Med. 330, 1287–1294 (1994).A comprehensive review of the rationale behind the use of aspirin to prevent cardiovascular disease, and its mechanisms of action.

    Article  CAS  PubMed  Google Scholar 

  3. Steering Committee of the Physicians' Health Study Research Group. Final report on the aspirin component of the ongoing Physicians' Health Study. N. Engl. J. Med. 321, 129–135 (1989).

  4. The RISC Group. Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. Lancet 336, 827–830 (1990).

  5. The SALT Collaborative Group. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischaemic events. Lancet 338, 1345–1349 (1991).

  6. Antiplatelet Trialist's Collaboration. Collaborative overview of randomized trials of antiplatelet therapy – I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 308, 81–106 (1994).

  7. Roth, G. J., Stanford, N. & Majerus, P. W. Acetylation of prostaglandin synthase by aspirin. Proc. Natl Acad. Sci. USA 72, 3073–3076 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patrono, C. et al. Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb. Res. 17, 317–327 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Gambino, M. C. et al. Selectivity of oral aspirin as an inhibitor of platelet vs. vascular cyclooxygenase activity is reduced by portocaval shunt in rats. J. Pharmacol. Exp. Ther. 245, 287–290 (1988).

    CAS  PubMed  Google Scholar 

  10. Lee, M., Cryer, B. & Feldman, M. Dose effects of aspirin on gastric prostaglandins and stomach mucosal injury. Ann. Intern. Med. 120, 184–189 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Meade, T. W., Roderick, P. J., Brennan, P. J., Wilkes, H. C. & Kelleher, C. C. Extracranial bleeding and other symptoms due to low dose aspirin and low intensity oral anticoagulation. Thromb. Haemost. 68, 1–6 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Lanas, A. et al. Nitrovasodilators, low-dose aspirin, other nonsteroidal anti-inflammatory drugs, and the risk of upper gastrointestinal bleeding. N. Engl. J. Med. 343, 834–839 (2000).This epidemiological study shows that the use of even low doses of aspirin is associated with significant increases in the risk of GI bleeding. Moreover, the use of conventional NO donors can abolish the increased risk of GI bleeding that is associated with aspirin.

    Article  CAS  PubMed  Google Scholar 

  13. Wallace, J. L. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: the second hundred years. Gastroenterology 112, 1000–1016 (1997).A review of the association between the use of nonsteroidal anti-inflammatory drugs, such as aspirin, and the adverse effects of those drugs on the digestive tract. This review includes a lengthy discussion of the various mechanisms through which drugs like aspirin cause damage in the stomach.

    Article  CAS  PubMed  Google Scholar 

  14. Soll, A. H., Weinstein, W. M., Kurata, J. & McCarthy, D. Nonsteroidal anti-inflammatory drugs and peptic ulcer disease. Ann. Intern. Med. 114, 307–319 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Bombardier, C. et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med. 343, 1520–1528 (2000).This paper is significant for two main reasons. It is the first paper to show convincingly that selective COX-2 inhibitors cause less GI injury than a conventional anti-arthritis drug. However, it also shows that there is a significantly increased risk of serious cardiovascular problems with the selective COX-2 inhibitor.

    Article  CAS  PubMed  Google Scholar 

  16. Silverstein, F. E. et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis. JAMA 284, 1247–1255 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Mukherjee, D., Nissen, S. E. & Topol, E. J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286, 954–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Crofford, L. J. et al. Thrombosis in patients with connective tissue diseases treated with specific cyclooxygenase 2 inhibitors. A report of four cases. Arthritis Rheum. 43, 1891–1896 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Swan, S. K. et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann. Intern. Med. 133, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Rossat, J., Maillard, M., Nussberger, J., Brunner, H. R. & Burnier, M. Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted subjects. Clin. Pharmacol. Ther. 66, 76–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. FDA Arthritis Advisory Committee Meeting. Review of NDA 21-042 Vioxx™ (rofecoxib) Merck Research Laboratories. [online] FDA Center for Drug Evaluation and Research (cited 26 Mar 02) 〈http://www.fda.gov/ohrms/dockets/ac/99/transcpt/3508t1.rtf〉 (1999).

  22. Wallace, J. L. et al. Novel nonsteroidal anti-inflammatory drug derivatives with markedly reduced ulcerogenic properties in the rat. Gastroenterology 107, 173–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Wallace, J. L. et al. A diclofenac derivative without ulcerogenic properties. Eur. J. Pharmacol. 257, 249–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wallace, J. L. et al. Gastrointestinal sparing anti-inflammatory drugs: the development of nitric oxide-relasing NSAIDs. Drug Dev. Res. 42, 144–149 (1997).

    Article  CAS  Google Scholar 

  25. Bandarage, U. K. et al. Nitrosothiol esters of diclofenac: synthesis and pharmacological characterization as gastrointestinal-sparing prodrugs. J. Med. Chem. 43, 4005–4016 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. MacNaughton, W. K., Cirino, G. & Wallace, J. L. Endothelium-derived relaxing factor (nitric oxide) has protective actions in the stomach. Life Sci. 45, 1869–1876 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Wallace, J. L. & Miller, M. J. S. Nitric oxide and mucosal defence: a little goes a long way. Gastroenterology 119, 512–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Davies, N. M. et al. NO-naproxen vs. naproxen: ulcerogenic, analgesic and anti-inflammatory effects. Aliment Pharmacol. Ther. 11, 69–79 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Wallace, J. L., McKnight, W., del Soldato, P., Baydoun, A. R. & Cirino, G. Anti-thrombotic effects of a nitric oxide-releasing, gastric-sparing aspirin derivative. J. Clin. Invest. 96, 2711–2718 (1995).This paper was the first to describe the actions of NO-aspirin; this drug was more potent than aspirin at blocking human platelet aggregation but, in the rat, did not cause any damage to the stomach (unlike aspirin).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wallace, J. L. et al. In vivo antithrombotic effects of a nitric oxide-releasing aspirin derivative, NCX-4016. Thromb. Res. 93, 43–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Fiorucci, S. et al. IL-1β converting enzyme is a target for nitric oxide-releasing aspirin: new insights in the antiinflammatory mechanism of nitric oxide-releasing nonsteroidal anti-inflammatory drugs. J. Immunol. 165, 5245–5254 (2000).This was the first paper to illustrate that NO-aspirin could inhibit caspase activity, thereby reducing the synthesis of pro-inflammatory cytokines. So, NO-aspirin exerts anti-inflammatory effects that are distinct from those of aspirin.

    Article  CAS  PubMed  Google Scholar 

  32. Momi, S. et al. Prevention of pulmonary thromboembolism by NCX 4016, a nitric oxide-releasing aspirin. Eur. J. Pharmacol. 397, 177–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Carini, M., Aldini, G., Stefani, R., Orioli, M. & Facino, R. M. Nitrosylhemoglobin, an unequivocal index of nitric oxide release from nitroaspirin: in vitro and in vivo studies in the rat by ESR spectroscopy. J. Pharm. Biomed. Anal. 26, 509–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Muscara, M. N. et al. Vasorelaxant effects of a nitric oxide-releasing aspirin derivative in normotensive and hypertensive rats. Br. J. Pharmacol. 133, 1314–1322 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto, T., Kakar, N. R., Vina, E. R., Johnson, P. E. & Bing, R. J. The effect of aspirin and two nitric oxide donors on the infarcted heart in situ. Life Sci. 67, 839–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Fulton, D. et al. Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J. Biol. Chem. 277, 4277–4284 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Takeuchi, K., Ukawa, H., Konaka, A., Kitamura, M. & Sugawa, Y. Effect of nitric oxide-releasing aspirin derivative on gastric functional and ulcerogenic responses in rats: comparison with plain aspirin. J. Pharmacol. Exp. Ther. 286, 115–121 (1998).

    CAS  PubMed  Google Scholar 

  38. Fiorucci, S., Santucci, L., Mencarelli, A., Del Soldato, P. & Morelli, A. Gastrointestinal safety of a NO-releasing aspirin derivative (NCX-4016) in humans: a double blind placebo-controlled endoscopic study. Gastroenterology (in the press).

  39. Minuz, P. et al. Antiaggregating and vasodilatory effects of a new nitroderivative of acetylsalicylic acid. Thromb. Res. 80, 367–376 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Fiorucci, S. et al. Gastrointestinal safety of nitric oxide-derived aspirin is related to inhibition of ICE-like cysteine proteases in rats. Gastroenterology 116, 1089–1106 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wallace, J. L., McKnight, W., Wilson, T. L., Del Soldato, P. & Cirino, G. Reduction of shock-induced gastric damage by a nitric oxide-releasing aspirin derivative: role of neutrophils. Am. J. Physiol. 273, G1246–G1251 (1997).

    CAS  PubMed  Google Scholar 

  42. Maricic, N. et al. Selective cyclo-oxygenase-2 inhibitors aggravate ischaemia–reperfusion injury in the rat stomach. Br. J. Pharmacol. 128, 1659–1666 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klungel, O. H. et al. Antihypertensive drug therapies and the risk of ischemic stroke. Arch. Intern. Med. 161, 37–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Houston, M. C. Nonsteroidal anti-inflammatory drugs and anti-hypertensives. Am. J. Med. 90, 42S–47S (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Whelton, A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am. J. Med. 106, 13S–24S (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Muscará, M, N., et al. Selective cyclooxygenase-2 inhibition with celecoxib elevates blood pressure and promotes leukocyte adherence. Br. J. Pharmacol. 129, 1423–1430 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Muscará, M. N. et al. Anti-hypertensive properties of a nitric oxide-releasing naproxen derivative in 2-kidney, 1-clip rats. Am J Physiol Heart Circ Physiol 279, H528–H535 (2000).

    Article  PubMed  Google Scholar 

  48. Muscará, M. N., McKnight, W. & Wallace, J. L. Effect of a nitric oxide-releasing naproxen derivative on hypertension and gastric damage induced by chronic nitric oxide inhibition in the rat. Life Sci. 62, PL235–PL240 (1998).

    Article  PubMed  Google Scholar 

  49. Wallace, J. L. & Muscara, M. N. Selective COX-2 inhibitors: cardiovascular and gastrointestinal toxicity. Dig. Liver Dis. 33, S21–S28 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Cooke, J. P. Is atherosclerosis an arginine deficiency disease? J. Invest. Med. 46, 377–380 (1998).

    CAS  Google Scholar 

  52. Drexler, H., Zeiher, A. M., Meinzer, K. & Just, H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338, 1546–1550 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Buga, G. M. et al. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am. J. Physiol. 271, H1988–H1998 (1996).

    CAS  PubMed  Google Scholar 

  54. Daghigh, F., Fukuto, J. M. & Ash, D. E. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem. Biophys. Res. Commun. 202, 174–180 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Buga, G. M., Wei, L., Bauer, P. M., Fukoto, J. M. & Ignarro, L. J. NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol. 275, R1256–R1264 (1998).

    CAS  PubMed  Google Scholar 

  56. Blachier, F., Robert, V., Selamnia, M., Mayeur, C. & Duee, P. H. Sodium nitroprusside inhibits proliferation and putrescine synthesis in human colon carcinoma cells. FEBS Lett. 396, 315–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Bauer, P. M., Fukuto, J. M., Buga, G. M., Pegg, A. E. & Ignarro, L. J. Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation. Biochem. Biophys. Res. Commun. 262, 355–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Ignarro, L. J. et al. Role of the arginine–nitric oxide pathway in the regulation of vascular smooth muscle cell proliferaton. Proc. Natl Acad. Sci. USA 98, 4202–4208 (2001).This paper provides several lines of evidence to support the hypothesis that nitric oxide modulates vascular-smooth-muscle proliferation through effects on ornithine decarboxylase and arginase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, M. W., Roubin, G. S. & King, S. B. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation 79, 1374–1387 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Schwartz, R. S., Holmes, D. R. & Topol, E. J. The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J. Am. Coll. Cardiol. 20, 1284–1293 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Folts, J. D., Schafer, A. I., Loscalzo, J., Willerson, J. T. & Muller, J. E. A perspective on the potential problems with aspirin as an antithrombotic agent: a comparison of studies in an animal model with clinical trials. J. Am. Coll. Cardiol. 33, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Awtry, E. H., Loscalzo, J. Aspirin. Circulation 101, 1206–1218 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Myers, P. R. et al. Restenosis is associated with decreased coronary artery nitric oxide synthase. Int. J. Cardiol. 55, 183–191 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Schwarzacher, S. P. et al. Local intramural delivery of L-arginine enhances nitric oxide generation and inhibits lesion formation after balloon angioplasty. Circulation 95, 1863–1869 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Niebauer, J. et al. Local L-arginine delivery after balloon angioplasty reduces monocyte binding and induces apoptosis. Circulation 100, 1830–1835 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Le Tourneau, T. et al. Role of nitric oxide in restenosis after experimental balloon angioplasty in the hypercholesterolemic rabbit: effects on neointimal hyperplasia and vascular remodeling. J. Am. Coll. Cardiol. 33, 876–882 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Napoli, C. et al. Effects of nitric oxide-releasing aspirin versus aspirin on restenosis in hypercholesterolemic mice. Proc. Natl Acad. Sci. USA 98, 2860–2864 (2001).Using a mouse model, these investigators showed the superiority of NCX4016 over aspirin in preventing the process of restenosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Napoli, C. et al. Efficacy and age-related effects of nitric oxide-releasing aspirin on experimental restenosis. Proc. Natl Acad. Sci. USA 99, 1689–1694 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Asako, H., Kubes, P., Wallace, J. L., Wolf, R. E. & Granger, D. N. Modulation of leukocyte adhesion in rat mesenteric venules by aspirin and salicylate. Gastroenterology 103, 146–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Wallace, J. L. et al. Enhanced anti-inflammatory effects of a nitric oxide-releasing derivative of mesalamine in rats. Gastroenterology 117, 557–566 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Gaboury, J., Woodman, R. C., Granger, D. N., Reinhardt, P. & Kubes, P. Nitric oxide prevents leukocyte adherence: role of superoxide. Am. J. Physiol. 265, H862–H867 (1993).

    CAS  PubMed  Google Scholar 

  72. Armstead, V. E. et al. Regulation of P-selectin expression in human endothelial cells by nitric oxide. Am. J. Physiol. 273, H740–H746 (1997).

    CAS  PubMed  Google Scholar 

  73. Mitchell, D. J., Yu, J. & Tyml, K. Local L-NAME decreases blood flow and increases leukocyte adhesion via CD18. Am. J. Physiol. 274, H1264–H1268 (1998).

    CAS  PubMed  Google Scholar 

  74. Wallace, J. L., Cirino, G., McKnight, G. W. & Elliott, S. N. Reduction of gastrointestinal injury in acute endotoxic shock by flurbiprofen nitroxybutylester. Eur. J. Pharmacol. 280, 63–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Rossoni, G., Berti, M., de Gennaro Colonna, V., Del Soldato, P. & Berti, F. Myocardial protection by the nitroderivative of aspirin, NCX 4016: in vitro and in vivo experiments in the rabbit. Ital. Heart J. 1, 146–155 (2000).

    CAS  PubMed  Google Scholar 

  76. Rossoni, G., Muscara, M. N., Cirino, G. & Wallace, J. L. Inhibition of cyclooxygenase-2 exacerbates ischaemia-induced acute myocardial dysfunction in the rabbit. Br. J. Pharmacol. (in the press).

  77. Berti, F. et al. Nitric oxide and prostacyclin influence coronary vasomotor tone in perfused rabbit heart and modulate endothelin-1 activity. J. Cardiovasc. Pharmacol. 22, 321–326 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Schrör, K., Zimmermann, K. C. & Tannhäuser, R. Augmented myocardial ischaemia by nicotine: mechanisms and their possible significance. Br. J. Pharmacol. 125, 79–86 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Miyauchi, T. et al. Increased plasma concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction. Lancet 2, 53–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Rossoni, G., Manfredi, B., de Gennaro Colonna, V., Bernareggi, M. & Berti, F. The nitroderivative of aspirin, NCX 4016, reduces infarct size caused by myocardial ischemia-reperfusion in the anesthetized rat. J. Pharmacol. Exp. Ther. 297, 380–387 (2001).

    CAS  PubMed  Google Scholar 

  81. Fiorucci, S., Antonelli, E., Burgaud, J. L. & Morelli, A. NO-releasing NSAIDs: a review of their current status. Drug Saf. 24, 801–811 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Al-Swayeh, O. A., Clifford, R. H., Del Soldato, P. & Moore, P. K. A comparison of the anti-inflammatory and anti-nociceptive activity of nitroaspirin and aspirin. Br. J. Pharmacol. 129, 343–350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wallace, J. L., Reuter, B. K. & Cirino, G. Nitric oxide-releasing non-steroidal anti-inflammatory drugs: a novel approach for reducing gastrointestinal toxicity. J. Gastroenterol. Hepatol. 9 (Suppl. 1), S40–S44 (1994).

    Article  PubMed  Google Scholar 

  84. Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signalling by proteolysis. Cell 91, 443–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Reed, J. C. Apoptosis-based therapies. Nature Rev. Drug Discovery 1, 111–121 (2002).

    Article  CAS  Google Scholar 

  87. Dinarello, C. A. & Margolis, N. H. Stopping the cuts: the recently discovered enzymes that process the precursors of inflammatory cytokines are good targets for the design of new anti-inflammatory therapeutic agents. Curr. Biol. 5, 587–590 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Thonberry, N. & Lazebnick, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  Google Scholar 

  89. Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Dimmeler, S., Haendeler, J., Nehls, M. & Zeiher, A. M. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601–607 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sims, J. E. IL-1 and IL-18 receptors, and their extended family. Curr. Opin. Immunol. 14, 117–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Tsutsui, H. et al. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 11, 359–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Fantuzzi, G., Reed, D. A. & Dinarello, C. A. IL-12-induced IFN-γ is dependent on caspase-1 processing of the IL-18 precursor. J. Clin. Invest. 104, 761–767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gu, Y. et al. Activation of interferon-γ inducing factor is mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Tsutsui, H. et al. IL-18 accounts for both TNF-α- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J. Immunol. 159, 3961–3967 (1997).

    CAS  PubMed  Google Scholar 

  96. Kim, Y. M., Talanian, R. V., Li, J. & Billiar, T. R. Nitric oxide prevents IL-1β and IFNγ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1β converting enzyme). J. Immunol. 161, 4122–4128 (1998).

    CAS  PubMed  Google Scholar 

  97. Fiorucci, S. et al. IL-1β converting enzyme is a target for nitric oxide-releasing aspirin: new insights in the antiinflammatory mechanism of nitric oxide-releasing nonsteroidal antiinflammatory drugs. J. Immunol. 165, 5245–5254 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Fiorucci, S. NO-releasing NSAIDs are caspase inhibitors. Trends Immunol. 22, 232–235 (2001).A review of the evidence that indicates that a principal mechanism of action of NO-aspirin in reducing inflammation is by means of S-nitrosylation of the caspase family of enzymes.

    Article  CAS  PubMed  Google Scholar 

  99. Fiorucci, S. et al. NO-aspirin protects from T-cell mediated liver injury by inhibiting caspase-dependent processing of TH1-like cytokines. Gastroenterology 118, 404–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Hauss-Wegrzyniak, B., Vraniak, P. & Wenk, G. L. The effects of a novel NSAID on chronic neuroinflammation are age dependent. Neurobiol. Aging 20, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Jantzen, P. T. et al. Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-Inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci. 22, 2246–2254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clementi, E., Brown, G. C., Foxwell, N. & Moncada, S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc. Natl Acad. Sci. USA 96, 1559–1562 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cines, D. B. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527–3561 (1998).

    CAS  PubMed  Google Scholar 

  104. Paxinou, E. et al. Dynamic regulation of metabolism and respiration by endogenously produced nitric oxide protects against oxidative stress. Proc. Natl Acad. Sci. USA 98, 11575–11580 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fiorucci, S. et al. Nitric oxide-releasing NSAIDs inhibit interleukin-1β converting enzyme-like cysteine proteases and protect endothelial cells from apoptosis induced by TNFα. Aliment. Pharmacol. Ther. 13, 421–435 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.W. is an Alberta Heritage Foundation for Medical Research Senior Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Wallace.

Related links

Related links

DATABASES

Cancer.gov

colon cancer

LocusLink

arginase

BCL2

BID

Casp1

caspase-1

caspase-2

caspase-3

caspase-4

caspase-5

caspase-6

caspase-7

caspase-8

caspase-9

caspase-10

COX-1

COX-2

endothelin 1

FAS

FASL

IFN-γ

IL-1β

IL-12

IL-18

IL-2 receptor

NOS

TNF-γ

Medscape DrugInfo

aspirin

naproxen

phenylephrine

rofecoxib

OMIM

Alzheimer's disease

atherosclerosis

rheumatoid arthritis

stroke

WormBase

ced-3

Glossary

PROPHYLAXIS

Preventative treatment against a disease.

ISCHAEMIA–REPERFUSION

A local reduction of blood flow, usually due to an obstruction, which is followed by a restoration of blood flow.

NORMOTENSIVE

A state of normal blood pressure.

VASOCONSTRICTOR

A substance that causes a narrowing of blood vessels, such that there is a slowing of the flow of blood.

ATHEROSCLEROSIS

Hardening of the arteries, which is caused by irregularly distributed fat deposits on the inner lining of these blood vessels (particularly in medium and large arteries).

ATHEROGENESIS

The formation of fat deposits on the inner lining of blood vessels.

PERCUTANEOUS TRANSLUMINAL ANGIOPLASTY

An operation for enlarging a narrowed artery by introducing, through the skin, a balloon-tipped catheter into the artery, and dilating the lumen of the artery on withdrawal of the inflated catheter tip.

RESTENOSIS

Recurrence of a narrowing of a blood vessel after corrective surgery or angioplasty has been performed.

NEOINTIMA

A newly formed inner lining of a blood vessel (such as that which is formed after angioplasty has been performed).

HYPERPLASIA

An increase in the number of cells in a tissue, such that the bulk of the tissue is increased.

ANGIOPLASTY

A procedure to reconstruct a blood vessel (often referring to the physical removal of atherosclerotic plaques (fat deposits) from the inner lining of blood vessels).

MESENTERIC VENULES

Small veins in the abdomen that carry blood from the digestive tract to the portal vein, and, through that vessel, to the liver.

PROSTACYCLIN

A chemical that is produced by various cells, including those on the inner lining of blood vessels, which can cause a widening of blood vessels (thereby increasing the flow of blood) and prevent platelets from sticking to one another.

ENDOPROTEASE

An enzyme that digests proteins by cleaving peptide bonds (between neighbouring amino acids) other than those at either end of the protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, J., Ignarro, L. & Fiorucci, S. Potential cardioprotective actions of no-releasing aspirin. Nat Rev Drug Discov 1, 375–382 (2002). https://doi.org/10.1038/nrd794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing