Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Zebrafish as tools for drug discovery

Key Points

  • Phenotypic screening has been one of the most effective approaches to drug discovery, but only a subset of disease-associated phenotypes can be modelled in cultured cells. Zebrafish exhibit a much broader range of disease-associated phenotypes, including disorders of physiology, metabolism and behaviour, while retaining the ability to be used for high-throughput applications.

  • Zebrafish are phylogenetically more distant from humans than rodents are, but they possess orthologues of 82% of human disease-associated genes. In many cases, they exhibit physiological and pharmacological conservation that approaches (and occasionally surpasses) that of rodents.

  • Zebrafish screens have discovered a few compounds that have made it to advanced preclinical and clinical trials, including new compound classes and repurposed drugs.

  • Zebrafish have been used in several toxicology applications, including the screening of large compound collections for potential liabilities.

  • Although target identification remains a challenge for phenotype-based small-molecule discovery, rich databases of zebrafish phenotypes have facilitated the identification of targets for several small molecules.

  • Rapid advances in genome editing and high-throughput phenotyping point to promising new applications for zebrafish in drug discovery over the coming years, including the discovery of compounds that suppress disease phenotypes associated with specific human mutations.

Abstract

The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How suitable are zebrafish for discovering human drugs?
Figure 2: BMP pathway inhibitors discovered by in vivo screens in zebrafish.
Figure 3: Zebrafish phenotypes reveal drug targets.
Figure 4: Use of zebrafish in toxicology.
Figure 5: Shared behavioural phenotypes reveal shared mechanisms and utilities.

Similar content being viewed by others

References

  1. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Clader, J. W. The discovery of ezetimibe: a view from outside the receptor. J. Med. Chem. 47, 1–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Stitziel, N. O. et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072–2082 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. Kodama, I., Kamiya, K. & Toyama, J. Cellular electropharmacology of amiodarone. Cardiovasc. Res. 35, 13–29 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Path, G. J., Dai, X. Z., Schwartz, J. S., Benditt, D. G. & Bache, R. J. Effects of amiodarone with and without polysorbate 80 on myocardial oxygen consumption and coronary blood flow during treadmill exercise in the dog. J. Cardiovasc. Pharmacol. 18, 11–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z. H. et al. Combined in vivo imaging and omics approaches reveal metabolism of icaritin and its glycosides in zebrafish larvae. Mol. Biosyst. 7, 2128–2138 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Jeong, J. Y. et al. Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res. Bull. 75, 619–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Goldstone, J. V. et al. Identification and developmental expression of the full complement ofcytochrome P450 genes in zebrafish. BMC Genomics 11, 643 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013). Completion of the zebrafish reference genome revealed that 82% of disease-associated human genes have a zebrafish orthologue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tiso, N., Moro, E. & Argenton, F. Zebrafish pancreas development. Mol. Cell. Endocrinol. 312, 24–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Gut, P. et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat. Chem. Biol. 9, 97–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Jagannathan-Bogdan, M. & Zon, L. I. Hematopoiesis. Development 140, 2463–2467 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganis, J. J. et al. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev. Biol. 366, 185–194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steinbicker, A. U. et al. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 117, 4915–4923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Paffett-Lugassy, N. et al. Functional conservation of erythropoietin signaling in zebrafish. Blood 110, 2718–2726 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asnani, A. & Peterson, R. T. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis. Model. Mech. 7, 763–767 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Milan, D. J., Peterson, T. A., Ruskin, J. N., Peterson, R. T. & MacRae, C. A. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107, 1355–1358 (2003).

    Article  PubMed  Google Scholar 

  20. Burns, C. G. et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat. Chem. Biol. 1, 263–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Chi, N. C. et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 6, e109 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Milan, D. J., Giokas, A. C., Serluca, F. C., Peterson, R. T. & MacRae, C. A. Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 133, 1125–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Milan, D. J., Jones, I. L., Ellinor, P. T. & MacRae, C. A. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am. J. Physiol. Heart Circ. Physiol. 291, H269–H273 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Schwerte, T. & Pelster, B. Digital motion analysis as a tool for analysing the shape and performance of the circulatory system in transparent animals. J. Exp. Biol. 203, 1659–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat. Med. 14, 1363–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren, B. et al. ERK1/2–Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J. Clin. Invest. 120, 1217–1228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y. et al. AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway. Blood 121, 4906–4916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kokel, D. et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat. Chem. Biol. 9, 257–263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Y. et al. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci. Transl. Med. 6, 266ra170 (2014). This manuscript describes the discovery of visnagin, a small molecule that protects the heart from chemotherapy-induced damage. The effects of visnagin were conserved in rodent heart failure models and were shown to be mediated through a novel target: MDH2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Asimaki, A. et al. Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci. Transl. Med. 6, 240ra274 (2014). Screening in a zebrafish model of arrhythmogenic cardiomyopathy identified SB216763, a compound capable of reversing the disease phenotype in zebrafish, rodent cells and cardiac myocytes from patient-derived stem cells. The manuscript highlights the potential of zebrafish screens for repurposing existing drugs.

    Article  CAS  Google Scholar 

  31. Shin, J. T., Pomerantsev, E. V., Mably, J. D. & MacRae, C. A. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. Physiol. Genom. 42, 300–309 (2010).

    Article  CAS  Google Scholar 

  32. Eliceiri, B. P., Gonzalez, A. M. & Baird, A. Zebrafish model of the blood–brain barrier: morphological and permeability studies. Methods Mol. Biol. 686, 371–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fleming, A., Diekmann, H. & Goldsmith, P. Functional characterisation of the maturation of the blood–brain barrier in larval zebrafish. PLoS ONE 8, e77548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Farber, S. A. et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Popovic, M., Zaja, R., Fent, K. & Smital, T. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1). Toxicol. Appl. Pharmacol. 280, 149–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Chng, H. T., Ho, H. K., Yap, C. W., Lam, S. H. & Chan, E. C. An investigation of the bioactivation potential and metabolism profile of zebrafish versus human. J. Biomol. Screen. 17, 974–986 (2012).

    Article  PubMed  Google Scholar 

  37. Reimers, M. J., Flockton, A. R. & Tanguay, R. L. Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol. Teratol. 26, 769–781 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kluver, N. et al. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos. PLoS ONE 9, e90619 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rennekamp, A. J. & Peterson, R. T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24, 58–70 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007). This paper illustrated the power of in situ expression screening in zebrafish by discovering PGE2 as a modulator of hematopoietic stem cell numbers. Discoveries described here resulted in clinical trials of a PGE2 derivative for improving HSC transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cutler, C. et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122, 3074–3081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hagedorn, E. J., Durand, E. M., Fast, E. M. & Zon, L. I. Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE. Exp. Cell Res. 329, 220–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008). The first small-molecule antagonists of the BMP pathway were discovered in a screen for compounds that perturb zebrafish embryogenesis. Dorsomorphin derivatives are being developed as therapeutics for a variety of indications associated with excessive BMP signalling.

    Article  CAS  PubMed  Google Scholar 

  45. Cuny, G. D. et al. Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg. Med. Chem. Lett. 18, 4388–4392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Theurl, I. et al. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood 118, 4977–4984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Derwall, M. et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 613–622 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Saeed, O. et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 299–307 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, L. et al. The bone morphogenetic protein–hepcidin axis as a therapeutic target in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 112–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Owens, K. N. et al. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet. 4, e1000020 (2008). This paper describes the discovery of compounds that protect hair cells from the toxic effects of aminoglycoside antibiotics. The protective effects of these compounds are conserved in mammals, suggesting their therapeutic potential to mitigate hearing loss caused by antibiotics and other drugs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yeh, J. R. et al. AML1–ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 135, 401–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Yeh, J. R. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat. Chem. Biol. 5, 236–243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y. et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klimek, V. M., Dolezal, E. K., Smith, L., Soff, G. & Nimer, S. D. Phase I trial of sodium salicylate in patients with myelodysplastic syndromes and acute myelogenous leukemia. Leuk. Res. 36, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Peal, D. S. et al. Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123, 23–30 (2011).

    Article  PubMed  Google Scholar 

  56. Ziegler, S., Pries, V., Hedberg, C. & Waldmann, H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed Engl. 52, 2744–2792 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Gutierrez, A. et al. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J. Clin. Invest. 124, 644–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sandoval, I. T. et al. Juxtaposition of chemical and mutation-induced developmental defects in zebrafish reveal a copper-chelating activity for kalihinol F. Chem. Biol. 20, 753–763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Y. et al. A chemical and genetic approach to the mode of action of fumagillin. Chem. Biol. 13, 1001–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Driessen, M. et al. A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen. Toxicol. Lett. 232, 403–412 (2014).

    Article  PubMed  CAS  Google Scholar 

  61. Ducharme, N. A., Reif, D. M., Gustafsson, J. A. & Bondesson, M. Comparison of toxicity values across zebrafish early life stages and mammalian studies: implications for chemical testing. Reprod. Toxicol. 55, 3–10 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotech. 31, 227–229 (2013).

    Article  CAS  Google Scholar 

  63. Gonzales, A. P. & Yeh, J. R. Cas9-based genome editing in zebrafish. Methods Enzymol. 546, 377–413 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Irion, U., Krauss, J. & Nusslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827–4830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gagnon, J. A. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE 9, e98186 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Auer, T. O., Duroure, K., De Cian, A., Concordet, J. P. & Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiao, A. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41, e141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peterson, R. T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotech. 22, 595–599 (2004).

    Article  CAS  Google Scholar 

  69. Stern, H. M. et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat. Chem. Biol. 1, 366–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Cao, Y. et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc. Natl Acad. Sci. USA 106, 21819–21824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013). In this paper, a zebrafish model of Dravet syndrome is characterized and used to screen approved drugs for the ability to attenuate seizure activity. The paper is a significant example of the ability to model genetic diseases in zebrafish, and it also highlights the model's potential for drug repurposing screens.

    Article  PubMed  Google Scholar 

  72. Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010). This paper was one of the first to describe high-throughput screening for behaviour-modifying compounds — in this case, modifiers of sleep and wakefulness. The ability to use behaviours as readouts for high-throughput screening opens new avenues for CNS drug discovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kokel, D. et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat. Chem. Biol. 6, 231–237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wolman, M. A., Jain, R. A., Liss, L. & Granato, M. Chemical modulation of memory formation in larval zebrafish. Proc. Natl Acad. Sci. USA 108, 15468–15473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morris, J. A. Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. Prog. Brain Res. 179, 97–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Singh, K. K. et al. Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development. Neuron 72, 545–558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mathew, L. K. et al. Unraveling tissue regeneration pathways using chemical genetics. J. Biol. Chem. 282, 35202–35210 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Tran, T. C. et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 67, 11386–11392 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Molina, G. et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5, 680–687 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Clifton, J. D. et al. Identification of novel inhibitors of dietary lipid absorption using zebrafish. PLoS ONE 5, e12386 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ishizaki, H. et al. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation. Dis. Model. Mech. 3, 639–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, C. et al. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur. Urol. 58, 418–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saydmohammed, M., Vollmer, L. L., Onuoha, E. O., Vogt, A. & Tsang, M. A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling. Birth Defects Res. C Embryo Today 93, 281–287 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rovira, M. et al. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc. Natl Acad. Sci. USA 108, 19264–19269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Colanesi, S. et al. Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell. Melanoma Res. 25, 131–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Namdaran, P., Reinhart, K. E., Owens, K. N., Raible, D. W. & Rubel, E. W. Identification of modulators of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 32, 3516–3528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Becker, J. R. et al. In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling. Cardiovasc. Res. 93, 463–470 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Padilla, S. et al. Zebrafish developmental screening of the ToxCast Phase I chemical library. Reprod. Toxicol. 33, 174–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Ridges, S. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119, 5621–5631 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weger, B. D., Weger, M., Nusser, M., Brenner-Weiss, G. & Dickmeis, T. A chemical screening system for glucocorticoid stress hormone signaling in an intact vertebrate. ACS Chem. Biol. 7, 1178–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jin, S. et al. An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action. J. Biomol. Screen 18, 108–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Nath, A. K. et al. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. FASEB J. 27, 1928–1938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, Y. J. et al. Cannabinoid receptor 2 suppresses leukocyte inflammatory migration by modulating the JNK/c-Jun/Alox5 pathway. J. Biol. Chem. 288, 13551–13562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Le, X. et al. A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development. Development 140, 2354–2364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hao, J. et al. Selective small molecule targeting β-catenin function discovered by in vivo chemical genetic screen. Cell Rep. 4, 898–904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gebruers, E. et al. A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling. PLoS ONE 8, e83293 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kong, Y. et al. Neural crest development and craniofacial morphogenesis is coordinated by nitric oxide and histone acetylation. Chem. Biol. 21, 488–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nishiya, N. et al. A zebrafish chemical suppressor screening identifies small molecule inhibitors of the Wnt/β-catenin pathway. Chem. Biol. 21, 530–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Tsuji, N. et al. Whole organism high content screening identifies stimulators of pancreatic β-cell proliferation. PLoS ONE 9, e104112 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Nath, A. K. et al. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 10, 694–701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Williams, C. H. et al. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for Hedgehog signaling inhibition. Cell Rep. 11, 43–50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gallardo, V. E. et al. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. Dis. Model. Mech. 8, 565–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Evanson, K. J. et al. Identification of chemical inhibitors of β-catenin-driven liver tumorigenesis in zebrafish. PLoS Genet. 11, e1005305 (2015).

    Article  CAS  Google Scholar 

  105. Li, P. et al. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523, 468–471 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang, G. et al. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. eLife. 4, e08261 (2015).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Rennekamp for his help compiling Table 1. R.T.P acknowledges support from the Charles Addison and Elizabeth Ann Sanders Professorship. The toxicology work of C.A.M. has been funded by an Innovation in Regulatory Science Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Calum A. MacRae or Randall T. Peterson.

Ethics declarations

Competing interests

The authors' laboratories receive funding from Hoffmann-La Roche (R.P.), Sanofi (C.M.) and Merck (C.M. and R.P.). R.P. holds equity in Teleos Therapeutics. The authors hold patents on a variety of compounds discovered in zebrafish screens.

PowerPoint slides

Glossary

Phenotype-based screening

A screen in which the assay output is a complex cellular or organismal phenotype that integrates multiple biochemical pathways and often captures much of the native biological context.

Target-based screening

A screen in which the assay output is the activity of a specific molecular target in a well-defined but often heterologous context.

Counter-screening

To screen in parallel for secondary end points that might condition the final output of the primary screen. Together, such screens enable the incorporation of simple logic; for example, a counter-screen might identify compounds with a specific form of toxicity, allowing the hits from the primary screen to be weighted appropriately for subsequent evaluation.

Toxicity reporter lines

Genetically modified zebrafish lines expressing specific tissue damage reporters under an organ-specific promoter. These lines will release heterologous reporter peptides that can then be detected using a range of high-throughput detection methods.

Fibrodysplasia ossificans progressiva

(FOP). A rare autosomal dominant condition caused by gain-of-function mutations in the gene encoding activin receptor-like kinase 2 (ALK2). These mutations result in chronic activation of the bone morphogenetic protein (BMP) pathway with resultant formation of ectopic bone in muscle tissue. Restriction of the thoracic skeleton then leads to respiratory failure, usually in childhood.

Anaemia of inflammation

A form of anaemia that is characterized by a block in iron availability for haematopoiesis and is observed in many chronic inflammatory diseases.

Long QT syndrome

A disorder in which restoration of the membrane potential to equilibrium after a cardiac action potential is delayed as a result of abnormal ion fluxes. This delay can be detected from the simple measurement, on a surface electrocardiogram (ECG), of the time from depolarization onset until the return to baseline membrane potential (the QT interval).

2:1 atrioventricular heart block

A cardiac rhythm disorder characterized by the failure of every second electrical impulse to propagate from the atrium to the ventricle. This can result from extreme forms of the long QT syndrome in which the delay in restoration of the membrane potential in the ventricle is such that it is refractory to the next electrical impulse from the atrium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacRae, C., Peterson, R. Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14, 721–731 (2015). https://doi.org/10.1038/nrd4627

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4627

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research