Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging paradigms in GPCR allostery: implications for drug discovery

Key Points

  • This Review discusses the potential advantages of allosteric ligands from a drug discovery perspective, and highlights opportunities that arise from these advantages.

  • Here, we first provide a classification of allosteric ligands.

  • 'Bitopic' ligands that bridge both allosteric and orthosteric binding pockets are discussed, along with the detection and quantification of allosteric ligands and their effects.

  • We then examine the probe-dependent nature of allosteric interactions and the implications of this in signalling systems that have multiple endogenous ligands.

  • The potential impact of the metabolism of orthosteric and allosteric ligands on allosteric drug action is also discussed, in addition to the ability of allosteric ligands to induce biased signalling by orthosteric ligands and the therapeutic relevance of this.

  • Key challenges in the identification and development of allosteric drug-like compounds are presented.

  • We also provide evidence of how GPCR dimerization may contribute to allosteric drug action.

  • Finally, we highlight key information gained from the recently solved GPCR structures and discuss how this can influence future drug discovery and screening for allosteric ligands.

Abstract

Allosteric ligands bind to G protein-coupled receptors (GPCRs; also known as seven-transmembrane receptors) at sites that are distinct from the sites to which endogenous ligands bind. The existence of allosteric ligands has enriched the ways in which the functions of GPCRs can be manipulated for potential therapeutic benefit, yet the complexity of their actions provides both challenges and opportunities for drug screening and development. Converging avenues of research in areas such as biased signalling by allosteric ligands and the mechanisms by which allosteric ligands modulate the effects of diverse endogenous ligands have provided new insights into how interactions between allosteric ligands and GPCRs could be exploited for drug discovery. These new findings have the potential to alter how screening for allosteric drugs is performed and may increase the chances of success in the development of allosteric modulators as clinical lead compounds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How allosteric ligands influence orthosteric ligand function.
Figure 2: Probe dependence and biased signalling.
Figure 3: Allosteric modulation of metabolites.
Figure 4: Metabolism of allosteric ligands.
Figure 5: Emerging structural insights into allostery.
Figure 6: Strategies for enhancing the translational outcomes of allosteric modulators.

Accession codes

Accessions

Protein Data Bank

References

  1. Jacoby, E., Bouhelal, R., Gerspacher, M. & Seuwen, K. The 7 TM G-protein-coupled receptor target family. ChemMedChem 1, 761–782 (2006).

    PubMed  Google Scholar 

  2. Melancon, B. J. et al. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J. Biol. Chem. 55, 1445–1464 (2012).

    CAS  Google Scholar 

  3. Kenakin, T. & Miller, L. J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Valant, C., Lane, J. R., Sexon, P. M. & Christopoulos, A. The best of both worlds? Biotopic orthosteric/allosteric ligands of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 52, 153–178 (2012). This is a detailed review on the advantages of ligands that have a bitopic mode of action.

    CAS  PubMed  Google Scholar 

  5. Antony, J. et al. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J. 23, 442–450 (2009).

    CAS  PubMed  Google Scholar 

  6. Steinfeld, T., Mammen, M., Smith, J. A., Wilson, R. D. & Jasper, J. R. A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol. 72, 291–302 (2007).

    CAS  PubMed  Google Scholar 

  7. Valant, C. et al. A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283, 29312–29321 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Waelbroeck, M. Identification of drugs competing with d-tubocurarine for an allosteric site on cardiac muscarinic receptors. Mol. Pharmacol. 46, 685–692 (1994).

    CAS  PubMed  Google Scholar 

  9. Christopoulos, A. & Mitchelson, F. Pharmacological analysis of the mode of interaction of McN-A-343 at atrial muscarinic M2 receptors. Eur. J. Pharmacol. 339, 153–156 (1997).

    CAS  PubMed  Google Scholar 

  10. Gregory, K. J., Hall, N. E., Tobin, A. B., Sexton, P. M. & Christopoulos, A. Identification of orthosteric and allosteric site mutations in the M2 muscarinic acetylcholine receptors that contribute to ligand-selective signalling bias. J. Biol. Chem. 285, 7459–7474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Langmead, C. J. et al. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M1 receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 69, 236–246 (2006).

    CAS  PubMed  Google Scholar 

  12. Avlani, V. A. et al. Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 78, 94–104 (2010).

    CAS  PubMed  Google Scholar 

  13. Lebon, G., Langmead, C. J., Tehan, B. G. & Hulme, E. C. Mutageneic mapping suggests a novel binding mode for selective agonists of M1 muscarinic acetylcholine receptors. Mol. Pharmacol. 75, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  14. Chien, E. Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Disingrini, T. et al. Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors. J. Med. Chem. 49, 366–372 (2006).

    CAS  PubMed  Google Scholar 

  16. Narlawar, R. et al. Hybrid ortho/allosteric ligands for the adenosine A1 receptor. J. Med. Chem. 53, 3028–3037 (2010).

    CAS  PubMed  Google Scholar 

  17. Kostenis, E. & Mohr, K. Two-point kinetic experiments to quantify allosteric effects on radioligand dissociation. Trends Pharmacol. Sci. 17, 280–283 (1996).

    CAS  PubMed  Google Scholar 

  18. May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    CAS  PubMed  Google Scholar 

  19. Ehlert, F. J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33, 187–194 (1988). This paper provides an introduction to the theory that underlies the ternary complex model for allosteric interactions.

    CAS  PubMed  Google Scholar 

  20. Black, J. W. & Leff, P. Operational models of pharmacological agonism. Proc. R. Soc. B Biol. Sci. 220, 141–162 (1983).

    CAS  Google Scholar 

  21. Watson, C., Jenkinson, S., Kazmierski, W. & Kenakin, T. The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol. Pharmacol. 67, 1268–1282 (2005).

    CAS  PubMed  Google Scholar 

  22. Krause, R. M. et al. Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53, 283–294 (1998).

    CAS  PubMed  Google Scholar 

  23. Suratman, S. et al. Impact of species variability and 'probe-dependence' on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br. J. Pharmacol. 162, 1659–1670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nawaratne, V., Leach, K., Felder, C. C., Sexton, P. M. & Christopoulos, A. Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J. Biol. Chem. 285, 19012–19021 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Valant, C., Felder, C. C., Sexton, P. M. & Christopoulos, A. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81, 41–52 (2012).

    CAS  PubMed  Google Scholar 

  26. Chan, W. Y. et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl Acad. Sci. USA 105, 10978–10983 (2008). This paper describes the discovery of the mAChR allosteric ligand LY2033298, which has activity in animal models that are predictive of clinical antipsychotic drug efficacy.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    CAS  PubMed  Google Scholar 

  28. Tao, Y. X. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev. 31, 506–543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gardella, T. J. & Juppner, H. Interaction of PTH and PTHrP with their receptors. Rev. Endocr. Metab. Disord. 1, 317–329 (2000).

    CAS  PubMed  Google Scholar 

  30. Halls, M. L., van der Westhuizen, E. T., Bathgate, R. A. & Summers, R. J. Relaxin family peptide receptors — former orphans reunite with their parent ligands to activate multiple signalling pathways. Br. J. Pharmacol. 150, 677–691 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Conigrave, A. D., Quinn, S. J. & Brown, E. M. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Br. J. Pharmacol. 97, 4814–4819 (2000).

    CAS  Google Scholar 

  32. Poyner, D. R. et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 54, 233–246 (2002).

    CAS  PubMed  Google Scholar 

  33. Estall, J. L. & Drucker, D. J. Glucagon and glucagon-like peptide receptors as drug targets. Curr. Pharm. Des. 12, 1731–1750 (2006).

    CAS  PubMed  Google Scholar 

  34. Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends. Pharmacol. Sci. 28, 382–389 (2007). This is the first description of the most simple model (that is, an amalgam of the Ehlert model of allosteric effects and the Black–Leff operational model) to describe the functional effects of allosteric modulators.

    CAS  PubMed  Google Scholar 

  35. Baker, J. G., Hall, I. P. & Hill, S. J. Agonist and inverse agonist actions of β-blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling. Mol. Pharmacol. 64, 1357–1369 (2003).

    CAS  PubMed  Google Scholar 

  36. Wisler, J. W. et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007). This paper describes the first demonstration of biased signalling by clinically relevant beta blockers, which may provide an explanation for the differential efficacies of these therapeutics in the treatment of heart failure.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Goupil, E. et al. A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2α-mediated Rho/ROCK signaling pathway. J. Biol. Chem. 285, 25624–25636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Makita, N. et al. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc. Natl Acad. Sci. USA 104, 5443–5448 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Canals, M., Sexton, P. M. & Christopoulos, A. Allostery in GPCRs: 'MWC' revisited. Trends. Biochem. Sci. 36, 663–672 (2011).

    CAS  PubMed  Google Scholar 

  40. Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).

    CAS  PubMed  Google Scholar 

  41. Koole, C. et al. Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol. Pharmacol. 78, 456–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wootten, D. et al. Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol. Pharmacol. 82, 281–290 (2012). This study provided in vivo validation that metabolites of endogenous ligands can be physiologically modulated by allosteric ligands.

    CAS  PubMed  Google Scholar 

  43. Willard, F. S. et al. Small molecule allosteric modulation of the glucagon-like peptide-1 receptor enhances the insulinotropic effect of oxyntomodulin. Mol. Pharmacol. 82, 1066–1073 (2012).

    CAS  PubMed  Google Scholar 

  44. Stanley, S., Wynne, K. & Bloom, S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G693–G697 (2004).

    CAS  PubMed  Google Scholar 

  45. Sloop, K. W. et al. Novel small molecule glucagon-like peptide-1 receptor agonist stimulates insulin secretion in rodents and from human islets. Diabetes 59, 3099–3107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Muniz-Medina, V. M. et al. The relative activity of “function sparing” HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol. Pharmacol. 75, 490–501 (2009).

    CAS  PubMed  Google Scholar 

  47. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434–1440 (2005).

    CAS  PubMed  Google Scholar 

  48. Willard, F. S. et al. Small molecule allosteric modulation of the glucagon-like peptide-1 receptor enhances the insulinotropic effect of oxyntomodulin. Mol. Pharmacol. 82, 1066–1073 (2012).

    CAS  PubMed  Google Scholar 

  49. Gao, Z. G. et al. Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochem. Pharmacol. 82, 658–668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Deacon, C. F., Johnsen, A. H. & Holst, J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957 (1995).

    CAS  PubMed  Google Scholar 

  51. Birks, R. I. & Macintosh, F. C. Acetylcholine metabolism at nerve-endings. Br. Med. Bull. 13, 157–161 (1957).

    CAS  PubMed  Google Scholar 

  52. Plagemann, P. G., Wohlhueter, R. M. & Kraupp, M. Adenosine uptake, transport, and metabolism in human erythrocytes. J. Cell. Physiol. 125, 330–336 (1985).

    CAS  PubMed  Google Scholar 

  53. Tucek, S. et al. The concentration of choline and the activities of cholinesterases, creatine kinase and lactate dehydrogenase in the blood plasma of piglets with the syndrome of splayleg (congenital myofibrillar hypoplasia). Zentralbl. Veterinarmed. A 32, 1–10 (1985).

    CAS  PubMed  Google Scholar 

  54. Backstrom, T., Goiny, M., Lockowandt, U., Liska, J. & Franco-Cereceda, A. Cardiac outflow of amino acids and purines during myocardial ischemia and reperfusion. J. Appl. Physiol. 94, 1122–1128 (2003).

    CAS  PubMed  Google Scholar 

  55. Tomas, E., Stanojevic, V. & Habener, J. F. GLP-1 (9–36) amide metabolite suppression of glucose production in isolated mouse hepatocytes. Horm. Metab. Res. 42, 657–662 (2010).

    CAS  PubMed  Google Scholar 

  56. Canals, M. et al. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287, 650–659 (2012).

    CAS  PubMed  Google Scholar 

  57. Williams, R. et al. Re-exploration of the PHCCC scaffold: discovery of improved positive allosteric modulators of mGluR4. ACS Chem. Neurosci. 1, 411–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schann, S. et al. Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. J. Med. Chem. 53, 8775–8779 (2010).

    CAS  PubMed  Google Scholar 

  59. Bridges, T. M. et al. Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part I: development of the first highly selective M5 PAM. Bioorg. Med. Chem. Lett. 20, 558–562 (2010).

    CAS  PubMed  Google Scholar 

  60. Bridges, T. M. et al. Discovery and development of a second highly selective M1 positive allosteric modulator (PAM). Probe Reports from the NIH Molecular Libraries Program [online], (National Center for Biotechnology Information, 2010).

    Google Scholar 

  61. Borshell, N., Papp, T. & Congreve, M. Deal watch: Valuation benefits of structure-enabled drug discovery. Nature Rev. Drug Discov. 10, 166 (2011).

    CAS  Google Scholar 

  62. Lagerstrom, M. C. & Schioth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov. 7, 339–357 (2008).

    Google Scholar 

  63. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    CAS  PubMed  Google Scholar 

  64. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011). This paper describes the first crystal structure of an agonist–GPCR–G protein ternary complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Warne, T., Edwards, P. C., Leslie, A. G. & Tate, C. G. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20, 841–849 (2012).

    CAS  PubMed  Google Scholar 

  66. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Granier, S. et al. Structure of the δ-opioid receptor bound to naltrindole. Nature 485, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, C. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shimamura, T. et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Runge, S., Thogersen, H., Madsen, K., Lau, J. & Rudolph, R. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J. Biol. Chem. 283, 11340–11347 (2008).

    CAS  PubMed  Google Scholar 

  76. Pioszak, A. A., Parker, N. R., Suino-Powell, K. & Xu, H. E. Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J. Biol. Chem. 283, 32900–32912 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H. & Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl Acad. Sci. USA 99, 2660–2665 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Muto, T., Tsuchiya, D., Morikawa, K. & Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl Acad. Sci. USA 104, 3759–3764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Matsui, H., Lazareno, S. & Birdsall, N. J. Probing of the location of the allosteric site on M1 muscarinic receptors by site-directed mutagenesis. Mol. Pharmacol. 47, 88–98 (1995).

    CAS  PubMed  Google Scholar 

  80. Trankle, C. et al. Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol. Pharmacol. 64, 180–190 (2003).

    PubMed  Google Scholar 

  81. Prilla, S., Schrobang, J., Ellis, J., Holtje, H. D. & Mohr, K. Allosteric interactions with muscarinic acetylcholine receptors: complex role of the conserved tryptophan M2422Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity. Mol. Pharmacol. 70, 181–193 (2006).

    CAS  PubMed  Google Scholar 

  82. Avlani, V. A. et al. Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J. Biol. Chem. 282, 25677–25686 (2007).

    CAS  PubMed  Google Scholar 

  83. Dragic, T. et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci. USA 97, 5639–5644 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gerlach, L. O., Skerlj, R. T., Bridger, G. J. & Schwartz, T. W. Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J. Biol. Chem. 276, 14153–14160 (2001).

    CAS  PubMed  Google Scholar 

  85. Maeda, K. et al. Structural and molecular interactions of CCR5 inhibitors with CCR5. J. Biol. Chem. 281, 12688–12698 (2006).

    CAS  PubMed  Google Scholar 

  86. Nicholls, D. J. et al. Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2. Mol. Pharmacol. 74, 1193–1202 (2008).

    CAS  PubMed  Google Scholar 

  87. Andrews, G., Jones, C. & Wreggett, K. A. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5. Mol. Pharmacol. 73, 855–867 (2008).

    CAS  PubMed  Google Scholar 

  88. Liaw, C. W., Grigoriadis, D. E., Lorang, M. T., De Souza, E. B. & Maki, R. A. Localization of agonist- and antagonist-binding domains of human corticotropin-releasing factor receptors. Mol. Endocrinol. 11, 2048–2053 (1997).

    CAS  PubMed  Google Scholar 

  89. Dupuis, D. S., Relkovic, D., Lhuillier, L., Mosbacher, J. & Kaupmann, K. Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the absence of the GABAB1 subunit. Mol. Pharmacol. 70, 2027–2036 (2006).

    CAS  PubMed  Google Scholar 

  90. Pagano, A. et al. The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J. Biol. Chem. 275, 33750–33758 (2000).

    CAS  PubMed  Google Scholar 

  91. Knoflach, F. et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc. Natl Acad. Sci. USA 98, 13402–13407 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Petrel, C. et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor. J. Biol. Chem. 278, 49487–49494 (2003).

    CAS  PubMed  Google Scholar 

  93. Malherbe, P. et al. Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J. Biol. Chem. 278, 8340–8347 (2003).

    CAS  PubMed  Google Scholar 

  94. Miedlich, S. U., Gama, L., Seuwen, K., Wolf, R. M. & Breitwieser, G. E. Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J. Biol. Chem. 279, 7254–7263 (2004).

    CAS  PubMed  Google Scholar 

  95. Cisowski, J. et al. Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am. J. Pathol. 179, 513–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tressel, S. L. et al. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol. Biol. 683, 259–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469, 236–240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Horstman, D. A. et al. An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. J. Biol. Chem. 265, 21590–21595 (1990).

    CAS  PubMed  Google Scholar 

  100. Costa, T., Lang, J., Gless, C. & Herz, A. Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium ions. Mol. Pharmacol. 37, 383–394 (1990).

    CAS  PubMed  Google Scholar 

  101. Gao, Z. G. & Ijzerman, A. P. Allosteric modulation of A2A adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000).

    CAS  PubMed  Google Scholar 

  102. Selent, J., Sanz, F., Pastor, M. & De Fabritiis, G. Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput. Biol. 6, e1000884 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Neve, K. A. et al. Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol. Pharmacol. 60, 373–381 (2001).

    CAS  PubMed  Google Scholar 

  104. Parker, M. S., Wong, Y. Y. & Parker, S. L. An ion-responsive motif in the second transmembrane segment of rhodopsin-like receptors. Amino Acids 35, 1–15 (2008).

    CAS  PubMed  Google Scholar 

  105. Vroling, B. et al. GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 39, D309–D319 (2011).

    CAS  PubMed  Google Scholar 

  106. Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012). This paper shows the structural basis for the observed negative allosteric effect of sodium ions on GPCR activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000).

    CAS  PubMed  Google Scholar 

  109. El-Asmar, L. et al. Evidence for negative binding cooperativity within CCR5–CCR2b heterodimers. Mol. Pharmacol. 67, 460–469 (2005).

    CAS  PubMed  Google Scholar 

  110. Ellis, J., Pediani, J. D., Canals, M., Milasta, S. & Milligan, G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J. Biol. Chem. 281, 38812–38824 (2006).

    CAS  PubMed  Google Scholar 

  111. Harikumar, K. G. et al. Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proc. Natl Acad. Sci. USA 109, 18607–18612 (2012). This study demonstrated that dimerization of a class B GPCR is important for the efficacy of orthosteric ligands but is not important for allosteric modulation, which occurs within a single receptor protomer.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Harikumar, K. G., Ball, A. M., Sexton, P. M. & Miller, L. J. Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization. Regul. Pept. 164, 113–119 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Harikumar, K. G., Happs, R. M. & Miller, L. J. Dimerization in the absence of higher-order oligomerization of the G protein-coupled secretin receptor. Biochim. Biophys. Acta. 1778, 2555–2563 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Harikumar, K. G., Pinon, D. I. & Miller, L. J. Transmembrane segment IV contributes a functionally important interface for oligomerization of the class II G protein-coupled secretin receptor. J. Biol. Chem. 282, 30363–30372 (2007).

    CAS  PubMed  Google Scholar 

  115. Gao, F. et al. Functional importance of a structurally distinct homodimeric complex of the family B G protein-coupled secretin receptor. Mol. Pharmacol. 76, 264–274 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. El Moustaine, D. et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc. Natl Acad. Sci. USA 109, 16342–16347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Block, G. et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N. Engl. J. Med. 350, 1516–1525 (2004). This is the first demonstration of an allosteric modulator that has clinical efficacy.

    CAS  PubMed  Google Scholar 

  118. Brown, E. M. Clinical lessons from the calcium sensing receptor. Nature Clin. Pract. Endocrinol. Metab. 3, 122–133 (2007).

    CAS  Google Scholar 

  119. Fatkenheuer, G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nature Med. 11, 1170–1172 (2005).

    PubMed  Google Scholar 

  120. Wood, A. & Armour, D. The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog. Med. Chem. 43, 239–271 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.M.S. and A.C. are principal research fellows of the National Health and Medical Research Council (NHMRC) of Australia, and their work is funded by an NHMRC program grant (number 519461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Sexton.

Ethics declarations

Competing interests

P.M.S. and A.C. receive funding from Servier and Alchemia in the area of GPCR drug discovery.

Related links

FURTHER INFORMATION

Protein Data Bank

PowerPoint slides

Glossary

Lead compounds

Chemical compounds that have the desired pharmacological properties and structures to be used as starting points for chemical modifications to improve their pharmacological and/or pharmacokinetic profile.

Orthosteric binding sites

Ligand binding sites on a G protein-coupled receptor for the endogenous ligand. These binding sites are also recognized by classical competitive antagonists and inverse agonists.

Inverse agonists

Ligands that bind to a receptor and decrease its basal signalling activity.

Positive allosteric modulators

Allosteric modulators that enhance the affinity and/or responsiveness of the orthosteric ligand.

Negative allosteric modulators

Allosteric modulators that decrease the affinity and/or responsiveness of the orthosteric ligand.

Neutral allosteric ligands

(Previously referred to as silent allosteric modulators). Allosteric ligands that bind to a G protein-coupled receptor but do not alter the affinity or efficacy of the orthosteric ligand.

Allosteric interaction

An interaction between two topographically distinct binding sites on the same receptor complex. These interactions can be between two ligand binding sites or between a ligand binding site and an effector binding site.

Probe dependence

The ability of an allosteric ligand to display different cooperativities with individual orthosteric ligands acting at the same G protein-coupled receptor.

Biased signalling

The ability of a ligand to preferentially stabilize specific G protein-coupled receptor conformations at the exclusion of others, with each conformational state associated with its own repertoire of signalling behaviours.

Allosteric modulators

Ligands that bind to an allosteric site on a receptor and modulate the binding and/or signalling efficacy of orthosteric ligands.

Intrinsic efficacy

The ability of a molecule to induce a physiological or pharmacological response when bound to a receptor.

Allosteric binding site

A ligand binding site on a G protein-coupled receptor that is topographically distinct from the orthosteric site.

Partial agonist

An agonist that produces a signalling response that is lower than the maximum response achievable for the given signalling system. Partial agonists can antagonize the effects of full agonists.

Binding assays

Assays that are used to assess ligand affinities and/or the kinetics of ligand binding.

Cooperativity factor-α

A parameter that is used to describe and quantify the intensity of the effect of allosteric ligand binding on the affinity of the orthosteric ligand (and vice versa).

Allosteric antagonists

Ligands that bind to the allosteric site but do not have efficacy, yet their binding disrupts or inhibits the binding of other allosteric ligands.

Negative cooperativity

The ability of a negative allosteric modulator to decrease the affinity or efficacy of an orthosteric ligand. This is defined by a cooperativity factor-α or modulation factor-β that is between 0 and 1.

Competitive ligands

Two or more ligands that bind to (and therefore compete for) the same ligand binding site. This term is typically used to describe orthosteric ligands.

Rate constants

Values that quantify the rate of association and dissociation for the binding of a ligand or an effector to a receptor.

Functional assays

Assays that are used to assess ligand efficacy in defined signalling response pathways.

EC50 value

The concentration of an agonist that produces 50% of the maximal response to the given agonist for a defined signalling response pathway.

Emax value

The maximal response of an agonist for a defined signalling response pathway.

Ehlert model

An allosteric ternary complex model that is used to estimate affinities of allosteric ligands and to quantify the effect of an allosteric ligand on the binding affinity of an orthosteric ligand.

Black–Leff operational model

A model that is used to describe and quantify the ability of an agonist to activate a cellular stimulus response upon binding to a receptor.

Modulation factor-β

A parameter that is used to describe and quantify the allosteric effect of an allosteric ligand on the efficacy of the orthosteric ligand.

Positive cooperativity

The ability of a positive allosteric modulator to enhance the affinity or efficacy of an orthosteric ligand. This is defined by a cooperativity factor-α or modulation factor-β that is greater than 1.

Allosteric agonists

Ligand that bind to an allosteric site and cause G protein-coupled receptor activation in the absence of an orthosteric ligand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wootten, D., Christopoulos, A. & Sexton, P. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12, 630–644 (2013). https://doi.org/10.1038/nrd4052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4052

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research