Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vemurafenib: the first drug approved for BRAF-mutant cancer

Key Points

  • The BRAF oncogene is found in 6–8% of all solid tumours, including about half of all melanomas.

  • Scaffold-based drug discovery was used to discover inhibitors of the BRAF oncogene.

  • Vemurafenib was identified as a selective inhibitor of oncogenic BRAF.

  • Preclinical studies supported the testing of the compound in patients with metastatic melanoma.

  • Significant clinical benefit was documented in patients with metastatic melanoma, validating the BRAF oncogene as a driver of these tumours. This led to regulatory approval of vemurafenib in the United States and Europe for the treatment of BRAF-mutant metastatic melanoma.

  • During the development of vemurafenib, an important unexpected finding was linked to some of the side effects: the RAF inhibitor paradox denotes inhibitor-induced RAF pathway activation in cells with elevated RAS signalling.

  • Future studies will explore the efficacy of vemurafenib in other tumours bearing the BRAF oncogene, and in combinations with other anticancer agents to improve the degree and durability of clinical benefit.

Abstract

The identification of driver oncogenes has provided important targets for drugs that can change the landscape of cancer therapies. One such example is the BRAF oncogene, which is found in about half of all melanomas as well as several other cancers. As a druggable kinase, oncogenic BRAF has become a crucial target of small-molecule drug discovery efforts. Following a rapid clinical development path, vemurafenib (Zelboraf; Plexxikon/Roche) was approved for the treatment of BRAF-mutated metastatic melanoma in the United States in August 2011 and the European Union in February 2012. This Review describes the underlying biology of BRAF, the technology used to identify vemurafenib and its clinical development milestones, along with future prospects based on lessons learned during its development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RAF pathway.
Figure 2: From scaffold to lead compound.
Figure 3: Vemurafenib in xenograft models.
Figure 4: Structural studies of vemurafenib.
Figure 5: Pharmacokinetic analysis of vemurafenib exposure in human plasma.
Figure 6: Vemurafenib-mediated tumour regression.
Figure 7: PET scans of patients treated with vemurafenib.
Figure 8: Paired biopsy data from a Phase I clinical trial.

Similar content being viewed by others

References

  1. Rapp, U. R. et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl Acad. Sci. USA 80, 4218–4222 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonner, T. et al. The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 223, 71–74 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Moelling, K., Heimann, B., Beimling, P., Rapp, U. R. & Sander, T. Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312, 558–561 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Huleihel, M. et al. Characterization of murine A-raf, a new oncogene related to the v-raf oncogene. Mol. Cell. Biol. 6, 2655–2662 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Beck, T. W., Huleihel, M., Gunnell, M., Bonner, T. I. & Rapp, U. R. The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acids Res. 15, 595–609 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikawa, S. et al. B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol. Cell. Biol. 8, 2651–2654 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Marx, M. et al. A novel oncogene related to c-mil is transduced in chicken neuroretina cells induced to proliferate by infection with an avian lymphomatosis virus. EMBO J. 7, 3369–3373 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). This is a landmark paper that describes the discovery of the BRAF oncogene.

    Article  CAS  PubMed  Google Scholar 

  9. Pollock, P. M. & Meltzer, P. S. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2, 5–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Rajagopalan, H. et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, Y. et al. BRAF mutation in papillary thyroid carcinoma. J. Natl Cancer Inst. 95, 625–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Fukushima, T. et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22, 6455–6457 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  14. Xu, X., Quiros, R. M., Gattuso, P., Ain, K. B. & Prinz, R. A. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 63, 4561–4567 (2003).

    CAS  PubMed  Google Scholar 

  15. Nikiforova, M. N. et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88, 5399–5404 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Singer, G. et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst. 95, 484–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  18. Lee, S. H. et al. BRAF and KRAS mutations in stomach cancer. Oncogene 22, 6942–6945 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Tannapfel, A. et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52, 706–712 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sommerer, F. et al. Mutations of BRAF and KRAS2 in the development of Barrett's adenocarcinoma. Oncogene 23, 554–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Weber, A. et al. Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene 22, 4757–4759 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Colombino, M. et al. BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis. 3, e259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Badalian-Very, G. et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116, 1919–1923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agaram, N. P. et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 47, 853–859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sievert, A. J. et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 19, 449–458 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Dias-Santagata, D. et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS ONE 6, e17948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schindler, G. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 121, 397–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Satyamoorthy, K. et al. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res. 63, 756–759 (2003).

    CAS  PubMed  Google Scholar 

  35. Tuveson, D. A., Weber, B. L. & Herlyn, M. BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell 4, 95–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Karasarides, M. et al. B-RAF is a therapeutic target in melanoma. Oncogene 23, 6292–6298 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Wellbrock, C. et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hingorani, S. R., Jacobetz, M. A., Robertson, G. P., Herlyn, M. & Tuveson, D. A. Suppression of BRAFV599E in human melanoma abrogates transformation. Cancer Res. 63, 5198–5202 (2003).

    CAS  PubMed  Google Scholar 

  39. Hoeflich, K. P. et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999–1006 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeong, J. H. et al. BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PLoS ONE 3, e3949 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dankort, D. et al. BRAfV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Goel, V. K. et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28, 2289–2298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chakravarty, D. et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Invest. 121, 4700–4711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Charles, R. P., Iezza, G., Amendola, E., Dankort, D. & McMahon, M. Mutationally activated BRAFV600E elicits papillary thyroid cancer in the adult mouse. Cancer Res. 71, 3863–3871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bollag, G., Freeman, S., Lyons, J. F. & Post, L. E. Raf pathway inhibitors in oncology. Curr. Opin. Investig. Drugs 4, 1436–1441 (2003).

    CAS  PubMed  Google Scholar 

  47. Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kane, R. C. et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res. 12, 7271–7278 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kane, R. C. et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist 14, 95–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Rev. Drug Discov. 5, 835–844 (2006).

    Article  CAS  Google Scholar 

  51. Flaherty, K. T. et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin. Cancer Res. 14, 4836–4842 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Hauschild, A. et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol. 27, 2823–2830 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ott, P. A. et al. A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS ONE 5, e15588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Anforth, R. M. et al. Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br. J. Dermatol. 16 Jul 2012 (doi:10.1111/j.1365-2133.2012.11155.x).

    Article  CAS  Google Scholar 

  56. Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 1893–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Su, Y. et al. RAF265 inhibits the growth of advanced human melanoma tumors. Clin. Cancer Res. 18, 2184–2198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. James, J. et al. CEP-32496: a novel orally active BRAF(V600E) inhibitor with selective cellular and in vivo antitumor activity. Mol. Cancer Ther. 11, 930–941 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Article  CAS  Google Scholar 

  61. Fabbro, D., Cowan-Jacob, S. W., Mobitz, H. & Martiny-Baron, G. Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol. Biol. 795, 1–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, C. & Bollag, G. Scaffold-based design of kinase inhibitors for cancer therapy. Curr. Opin. Genet. Dev. 20, 79–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Hartshorn, M. J. et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 48, 403–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Murray, C. W. & Rees, D. C. The rise of fragment-based drug discovery. Nature Chem. 1, 187–192 (2009).

    Article  CAS  Google Scholar 

  66. Norman, R. A., Toader, D. & Ferguson, A. D. Structural approaches to obtain kinase selectivity. Trends Pharmacol. Sci. 33, 273–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Kumar, A. et al. Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma. J. Mol. Biol. 348, 183–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Card, G. L. et al. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nature Biotech. 23, 201–207 (2005).

    Article  CAS  Google Scholar 

  69. Artis, D. R. et al. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc. Natl Acad. Sci. USA 106, 262–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010). This article details the discovery and development of vemurafenib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006). This paper describes the discovery that the BRAF oncogene drives the RAF–MEK–ERK pathway in cancer cells.

    Article  CAS  PubMed  Google Scholar 

  72. Halaban, R. et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res. 23, 190–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl Acad. Sci. USA 107, 14903–14908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, J. T. et al. PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell Melanoma Res. 23, 820–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pratilas, C. A. & Solit, D. B. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin. Cancer Res. 16, 3329–3334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sondergaard, J. N. et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J. Transl. Med. 8, 39 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tap, W. D. et al. Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12, 637–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, H. et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 70, 5518–5527 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Sala, E. et al. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol. Cancer Res. 6, 751–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Salerno, P. et al. Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J. Clin. Endocrinol. Metab. 95, 450–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Paraiso, K. H. et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer 102, 1724–1730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shao, Y. & Aplin, A. E. Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells. Cancer Res. 70, 6670–6681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Basile, K. J., Abel, E. V. & Aplin, A. E. Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells. Oncogene 31, 2471–2479 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Deng, W. et al. Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell Melanoma Res. 25, 248–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Kaplan, F. M., Shao, Y., Mayberry, M. M. & Aplin, A. E. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 30, 366–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600BRAF. Oncogene 31, 446–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Garnett, M. J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20, 963–969 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, H. et al. Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res. 72, 779–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010). This paper reports the results of a Phase I clinical trial that shows the pharmacokinetics and clinical efficacy of vemurafenib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J. Clin. Oncol. 28, Abstract 3534 (2010).

    Article  Google Scholar 

  94. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012). This is a study showing the efficacy of vemurafenib in Phase II clinical trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011). This is a study showing the efficacy of vemurafenib in Phase III clinical trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McArthur, G. A. et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J. Clin. Oncol. 30, 1628–1634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang, C. C. et al. Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS. Cell Death Dis. 1, e69 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nicolaides, T. P. et al. Targeted therapy for BRAFV600E malignant astrocytoma. Clin. Cancer Res. 17, 7595–7604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Esteve-Puig, R., Canals, F., Colome, N., Merlino, G. & Recio, J. A. Uncoupling of the LKB1-AMPKα energy sensor pathway by growth factors and oncogenic BRAFV600E. PLoS ONE 4, e4771 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Niehr, F. et al. Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. J. Transl. Med. 9, 76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71, 2750–2760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Corcoran, R. B. et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Commun. 3, 724 (2012).

    Article  CAS  Google Scholar 

  109. Little, A. S. et al. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci. Signal. 4, ra17 (2011).

    Article  PubMed  CAS  Google Scholar 

  110. Corcoran, R. B. et al. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci. Signal. 3, ra84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Solit, D. B. & Rosen, N. Resistance to BRAF inhibition in melanomas. N. Engl. J. Med. 364, 772–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hall-Jackson, C. A. et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem. Biol. 6, 559–568 (1999). This paper is the first description of the RAF inhibitor paradox.

    Article  CAS  PubMed  Google Scholar 

  116. Courtois-Cox, S. et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10, 459–472 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Ritt, D. A., Monson, D. M., Specht, S. I. & Morrison, D. K. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell. Biol. 30, 806–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010). Together with references 88 and 91, this is one of the key studies that unravels the mechanism of the RAF inhibitor paradox.

    Article  CAS  PubMed  Google Scholar 

  120. Brennan, D. F. et al. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472, 366–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. McKay, M. M., Ritt, D. A. & Morrison, D. K. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr. Biol. 21, 563–568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, J. et al. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc. Natl Acad. Sci. USA 108, 6067–6072 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012). This study documents the occurrence and mechanism of vemurafenib-stimulated cutaneous squamous cell carcinomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Dietrich, S. et al. BRAF inhibition in refractory hairy-cell leukemia. N. Engl. J. Med. 366, 2038–2040 (2012).

    Article  PubMed  Google Scholar 

  126. Gautschi, O. et al. A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J. Thorac. Oncol. 7, e23–e24 (2012).

    Article  PubMed  Google Scholar 

  127. Comin-Anduix, B. et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin. Cancer Res. 16, 6040–6048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Koch, W. H. Technology platforms for pharmacogenomic diagnostic assays. Nature Rev. Drug Discov. 3, 749–761 (2004).

    Article  CAS  Google Scholar 

  130. Halait, H. et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn. Mol. Pathol. 21, 1–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Garber, K. Cancer research. Melanoma drug vindicates targeted approach. Science 326, 1619 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Howe, L. R. et al. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71, 335–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Jamal, S. & Ziff, E. Transactivation of c-fos and β-actin genes by raf as a step in early response to transmembrane signals. Nature 344, 463–466 (1990).

    Article  CAS  PubMed  Google Scholar 

  134. Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nature Rev. Cancer 7, 295–308 (2007).

    Article  CAS  Google Scholar 

  135. Warne, P. H., Viciana, P. R. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Leevers, S. J., Paterson, H. F. & Marshall, C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Luo, Z. et al. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Weber, C. K., Slupsky, J. R., Kalmes, H. A. & Rapp, U. R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 61, 3595–3598 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the employees of Plexxikon who contributed to the work described here. They also thank their colleagues at Roche, the clinical investigators and especially the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Bollag.

Ethics declarations

Competing interests

All authors are employees of Plexxikon Inc., a member of the Daiichi Sankyo group.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

Glossary

Scaffolds

Moderately small molecules — typically 150–350 Da — discovered through screens that measure biochemical activity or in binding assays. Lead optimization of scaffolds usually involves decorating the scaffold with rationally designed substitutions.

Chemical space

The potential chemical diversity that is spanned by all possible combinations of atomic elements to yield all possible compounds encompassing all sizes and with all potential chemical and physical properties.

Fragment

A very small molecule — typically less than 250 Da — discovered through biophysical screening methods such as nuclear magnetic resonance (NMR) or X-ray technologies. Often, several fragments that represent discrete binding components will be linked together to enhance potency during lead optimization.

DFG motif

A motif (Asp-Phe-Gly) that marks the beginning of the activation loop and can assume one of two conformations based on the side-chain orientation of the central residue in the motif: 'DFG-in' and 'DFG-out'. The conformation of the DFG motif affects ATP substrate binding and the catalytic competency of the kinase.

Anchor and grow

A key design strategy of scaffold-based drug discovery, in which the scaffold serves as the anchor that remains constant throughout chemical exploration, and multiple analogues are synthesized systematically by adding substituents to branch points to access unoccupied sub-sites of the drug target.

αC helix

A structurally conserved helix that is present in one of the two lobes that flank the ATP-binding site of a protein kinase. Its conformation is crucial for ATP binding and kinase activity.

Investigational new drug application

A detailed report of compound characteristics, including synthetic and analytical methods, formulation, pharmacology and toxicology data and clinical plans, that is submitted to the US Food and Drug Administration to request approval to begin clinical testing.

Microprecipitated bulk powder

A stabilized formulation of vemurafenib consisting of amorphous (non-crystalline) microparticles that were prepared by precipitating vemurafenib into a polymer matrix; this process substantially improved the systemic absorption of vemurafenib.

Area under the curve

(AUC). A pharmacokinetic parameter that measures the integrated area under the plasma drug concentration curve as a function of time.

Elimination half-life

A pharmacokinetic parameter that measures the time it takes for half of a drug concentration to be eliminated from circulating plasma.

Preclinical scaling analyses

Methods for predicting the pharmacokinetic properties of a drug in humans by extrapolating from its pharmacokinetic properties in multiple animal species.

Adverse events

Adverse side effects graded, by the common toxicity criteria, from 0 (no adverse event) to 5 (fatal adverse event). Grade 1 adverse events are generally mild in severity.

Cutaneous squamous cell carcinoma

Neoplasm of the skin characterized by epithelial cells with a squamous histology.

Keratoacanthoma

A specific low-grade subtype of cutaneous squamous cell carcinoma with a characteristic morphology, believed to originate from the hair follicle.

Unconfirmed overall response rate

The percentage of patients with a partial or complete response recorded from the tumour-imaging scan that showed the highest tumour reduction.

Confirmed overall response rate

The percentage of patients with a partial or complete response who have shown maintenance of tumour reduction using a second tumour-imaging scan taken at least 4 weeks after the initial scan.

Complete response

Determined using RECIST (response evaluation criteria in solid tumours); indicates a 100% reduction in the combined width and length (two-dimensional measurements) of the target lesions of a tumour and no new tumour growth.

Dacarbazine

A chemotherapeutic that kills dividing cells by alkylating DNA and has been approved to treat metastatic melanoma.

Progression-free survival

The duration of time that a patient with cancer survives, in which a tumour does not increase by more than 20% in size.

Hazard ratio

A statistical analysis that measures the significance of a clinical end point by comparing the rate of events in two different cohorts: for example, patients who are not exposed and those who are exposed to a new agent. A hazard ratio of 1 means that there is no effect; a hazard ratio of 0.6 implies that the treated cohort has 60% of the hazard of the untreated cohort (that is, the agent reduces the hazard by 40%).

Neural crest cells

Immature cells found at the crest of the neural plate that give rise to various differentiated cells, including melanocytes.

RECIST

Response evaluation criteria in solid tumours; a set of standardized criteria that define whether patients with cancer have a partial or complete response and stable or progressive disease during treatments.

Partial response

Determined using RECIST (response evaluation criteria in solid tumours); indicates at least 30% reduction in the combined width and length (two-dimensional measurements) of the target lesions of a tumour and no new tumour growth.

On-target genetic alteration

In the context of resistance to a kinase inhibitor, this term refers to a mutation or other genetic alteration in the intended target of the inhibitor that makes the kinase insensitive to the inhibitor.

Cytotoxic T lymphocyte antigen 4

A receptor on the surface of T cells that mediates downregulation of the immune response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollag, G., Tsai, J., Zhang, J. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11, 873–886 (2012). https://doi.org/10.1038/nrd3847

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3847

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer