Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases

Key Points

  • Historically, testing matrix metalloproteinase inhibitors (MMPIs) for the therapy of invasive or metastatic cancers has not yielded the expected beneficial results, but has had a positive effect on the development of MMPIs. However, cancers are genetically unstable and more heterogeneous, which implies that the treatment outcomes are less predictable than in inflammation. In addition, it is not clear whether inflammatory cell infiltrations in cancers have beneficial or detrimental roles for the host.

  • Seminal work on inflammation and vascular MMP biology is reviewed here and indicates a further need to test MMPIs in established and new animal models of inflammation, infection and ischaemia. In analogy with inducible cyclooxygenase as a drug target, inducible MMPs are preferred above constitutive or homeostatic enzymes to target with MMPIs in inflammatory and vascular diseases.

  • In contrast to microbiological enzyme targets, MMPs are host enzymes. This implies that with MMPI treatment, normal physiological functions will be blocked with subsequent side effects. Such side effects are, however, tolerable in life-saving situations.

  • In acute life-threatening inflammation, oral use and high selectivity of MMPIs — set as unreached double challenges in the development of MMPIs for cancer treatment — are not necessary. This implies that obligately parenteral drugs, including recombinant proteins (for example, interferon affecting the tissue inhibitor of matrix metalloproteinase (TIMP)/MMP balance) and monoclonal antibodies that inhibit MMPs and peptide MMPIs, are worthwhile to develop and to combine.

  • For chronic inflammatory diseases, the picture is completely different to acute inflammation. High selectivity and oral availability are in demand. These diseases constitute important targets for the pharmaceutical industry. Therefore, major basic and animal research efforts need to be continued and extended.

  • For vascular diseases, the primary question of whether to use MMPIs relates to the aetiology of the pathology and the localization of the injury. Acute ischaemic insults might benefit from MMPI treatment by the rescue of tissue in the penumbra zones. Long-term treatment of chronic ischaemia with MMPIs will necessitate the development of novel oral, highly selective MMPIs.

  • Studies with Mmp-knockout mice contribute to novel insights and are a reasonable indicator to discover whether selective MMPIs have potential benefit. However, acute and chronic inflammatory and vascular animal models have not been sufficiently studied, yielded sometimes discrepant data and are prone to compensatory mechanisms and strain-specific differences. The development of inducible and multiple Mmp-knockout mice, studies of various strain backcrosses and better complementation of data might overcome some of these problems.

  • From animal models of organ-specific and tissue-specific acute inflammation and ischaemia the general view is that specific MMPs dominate in the pathogenesis, for example, MMP12 in lung emphysema and MMP9 in acute ischaemia and multiple sclerosis. MMP9 has been studied most as an inducible drug target and many (unspecific) inhibitors against MMP9 have been synthesized and are reviewed. Efforts to generate the complete, rather than partial, MMP crystal structures, molecular modelling and empirical inhibitor screening studies need to be combined with extensive animal experiments for the discovery of novel highly specific and therapeutically active inhibitors.

  • For development of synthetic MMPIs, high-affinity zinc-binding groups, mainly hydroxamates, have been preferred. With the discovery of zinc-containing ADAMs (a disintegrin and metalloproteinases) and ADAMTSs (ADAMs with a thrombospondin motif) and their evolving roles in biology and pathology, other determinants for the binding of inhibitors to MMPs, including the active-site pockets and exosites, need to be further investigated. Protein domain specificity, pH dependence of carboxylates and better substrate-based design might be exploited in future directions for MMPI development.

Abstract

Matrix metalloproteinases (MMPs) have outgrown the field of extracellular-matrix biology and have progressed towards being important regulatory molecules in cancer and inflammation. This rise in status was accompanied by the development of various classes of inhibitors. Although clinical trials with synthetic inhibitors for the treatment of cancer were disappointing, recent data indicate that the use of selective inhibitors might lead to new therapies for acute and chronic inflammatory and vascular diseases. In this Review, we compare the major classes of MMP inhibitors and advocate that future drug discovery should be based on crucial insights into the differential roles of specific MMPs in pathophysiology obtained with animal models, including knockout studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structures of MMPs.
Figure 2: Schematic representation of the interaction of a peptide inhibitor with an MMP active site.
Figure 3: A proposed mechanistic model of the molecular interaction between a hydroxamate or carboxylate inhibitor and the active-site zinc ion of a metalloproteinase.
Figure 4: MMPs in inflammation and influence by MMPIs.
Figure 5: Roles of MMPs in asthma.

Similar content being viewed by others

References

  1. Barrett, A. J., Rawlings, N. D. & Woessner J. F. Handbook of Proteolytic Enzymes (Academic Press, London, 2004).

    Google Scholar 

  2. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    CAS  Google Scholar 

  3. Kobayashi, Y., Matsumoto, M., Kotani, M. & Makino, T. Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation. J. Immunol. 163, 5989–5993 (1999).

    CAS  PubMed  Google Scholar 

  4. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Overall, C. M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672 (2002).

    CAS  Google Scholar 

  6. Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 5578–5582 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kleifeld, O. et al. Structural characterization of the catalytic active site in the latent and active natural gelatinase B from human neutrophils. J. Biol. Chem. 275, 34335–34343 (2000).

    CAS  PubMed  Google Scholar 

  8. Van den Steen, P. E. et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 37, 375–536 (2002).

    CAS  PubMed  Google Scholar 

  9. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002). An excellent review on the similarities of the molecular processes between inflammation and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Creighton, C. & Hanash, S. Expression of matrix metalloproteinase 9 (MMP-9/gelatinase B) in adenocarcinomas strongly correlated with expression of immune response genes. In Silico Biol. 3, 301–311 (2003).

    CAS  PubMed  Google Scholar 

  11. Opdenakker, G. & Van Damme, J. Cytokines and proteases in invasive processes: molecular similarities between inflammation and cancer. Cytokine 4, 251–258 (1992).

    CAS  PubMed  Google Scholar 

  12. Opdenakker, G. & Van Damme, J. The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int. J. Dev. Biol. 48, 519–527 (2004).

    CAS  PubMed  Google Scholar 

  13. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chantrain, C. F. et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 64, 1675–1686 (2004).

    CAS  PubMed  Google Scholar 

  15. Cuzner, M. L. and Opdenakker, G. Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J. Neuroimmunol. 94, 1–14 (1999).

    CAS  PubMed  Google Scholar 

  16. Pruijt, J. F. M. et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc. Natl Acad. Sci. USA 96, 10863–10868 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Opdenakker, G., Fibbe, W. E. & Van Damme, J. The molecular basis of leukocytosis. Immunol. Today 19, 182–189 (1998).

    CAS  PubMed  Google Scholar 

  18. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Med. 12, 657–664 (2006).

    CAS  PubMed  Google Scholar 

  19. Parks, W. C., Wilson, C. L. & Lopez-Boado, Y. S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Rev. Immunol. 4, 617–629 (2004).

    CAS  Google Scholar 

  20. Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681 (2000). Together with references 21–23, 67 and 157, describes important regulatory effects of MMPs on chemokine and cytokine functions.

    CAS  PubMed  Google Scholar 

  21. Van den Steen, P. E. et al. Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur. J. Biochem. 270, 3739–3749 (2003).

    CAS  PubMed  Google Scholar 

  22. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    CAS  PubMed  Google Scholar 

  23. McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160–1167 (2002).

    CAS  PubMed  Google Scholar 

  24. Whittaker, M., Floyd, C. D., Brown, P. & Gearing, A. J. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. Rev. 99, 2735–2776 (1999).

    CAS  PubMed  Google Scholar 

  25. Hu, J., Van den Steen, P. E., Houde, M., Ilenchuk, T. T. & Opdenakker, G. Inhibitors of gelatinase B/matrix metalloproteinase-9 activity comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochem. Pharmacol. 67, 1001–1009 (2004).

    CAS  PubMed  Google Scholar 

  26. Martens, E. et al. A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim. Biophys. Acta 1770, 178–186 (2007).

    CAS  PubMed  Google Scholar 

  27. Chirco, R., Liu, X. W., Jung, K. K. & Kim, H. R. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev. 25, 99–113 (2006).

    CAS  PubMed  Google Scholar 

  28. Overall, C. M. & Kleifeld, O. Tumour microenvironment — opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev. Cancer 6, 227–239 (2006).

    CAS  Google Scholar 

  29. Kontogiorgis, C. A., Papaioannou, P. & Hadjipavlou-Litina, D. J. Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results. Curr. Med. Chem. 12, 339–355 (2005).

    CAS  PubMed  Google Scholar 

  30. Sang, Q. X. et al. Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr. Top. Med. Chem. 6, 289–316 (2006). Together with references 24 and 29, constitutes an excellent update on the medicinal chemistry of MMPIs.

    CAS  PubMed  Google Scholar 

  31. Breuer, E., Frant, J. & Reich, R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin. Ther. Patents 15, 253–269 (2005).

    CAS  Google Scholar 

  32. Babine, R. E. & Bender, S. L. Molecular recognition of protein–ligand complexes: applications to drug design. Chem. Rev. 97, 1359–1472 (1997).

    CAS  PubMed  Google Scholar 

  33. Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 87, 249–263 (2005).

    CAS  PubMed  Google Scholar 

  34. Morgunova, E. et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284, 1667–1670 (1999).

    CAS  PubMed  Google Scholar 

  35. Clements, J. M. et al. Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-α inhibitor. J. Neuroimmunol. 74, 85–94 (1997).

    CAS  PubMed  Google Scholar 

  36. Xue, C. B. et al. Design and synthesis of cyclic inhibitors of matrix metalloproteinases and TNF-α production. J. Med. Chem. 41, 1745–1748 (1998).

    CAS  PubMed  Google Scholar 

  37. Hu, J., Fiten, P., Van den Steen, P. E., Chaltin, P. & Opdenakker, G. Simulation of evolution-selected propeptide by high-throughput selection of a peptidomimetic inhibitor on a capillary DNA sequencer platform. Anal. Chem. 77, 2116–2124 (2005).

    CAS  PubMed  Google Scholar 

  38. MacPherson, L. J. et al. Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J. Med. Chem. 40, 2525–2532 (1997).

    CAS  PubMed  Google Scholar 

  39. Pikul, S. et al. Design and synthesis of phosphinamide-based hydroxamic acids as inhibitors of matrix metalloproteinases. J. Med. Chem. 42, 87–94 (1999).

    CAS  PubMed  Google Scholar 

  40. Hamada, T., Arima, N., Shindo, M., Sugama, K. & Sasaguri, Y. Suppression of adjuvant arthritis of rats by a novel matrix metalloproteinase-inhibitor. Br. J. Pharmacol. 131, 1513–1520 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gatto, C. et al. BAY 12–9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. 5, 3603–3607 (1999).

    CAS  PubMed  Google Scholar 

  42. Levin, J. I. et al. The asymmetric synthesis and in vitro characterization of succinyl mercaptoalcohol and mercaptoketone inhibitors of matrix metalloproteinases. Bioorg. Med. Chem. Lett. 8, 1163–1168 (1998).

    CAS  PubMed  Google Scholar 

  43. Wang, X., Choe, Y., Craik, C. S. & Ellman, J. A. Design and synthesis of novel inhibitors of gelatinase B. Bioorg. Med. Chem. Lett. 12, 2201–2204 (2002).

    CAS  PubMed  Google Scholar 

  44. Brown, S. et al. Potent and selective mechanism-based inhibition of gelatinases. J. Am. Chem. Soc. 122, 6799–6800 (2000).

    CAS  Google Scholar 

  45. Kleifeld, O. et al. X-ray absorption studies of human matrix metalloproteinase-2 (MMP-2) bound to a highly selective mechanism-based inhibitor. Comparison with the latent and active forms of the enzyme. J. Biol. Chem. 276, 17125–17131 (2001).

    CAS  PubMed  Google Scholar 

  46. Ikejiri, M. et al. Design, synthesis, and evaluation of a mechanism-based inhibitor for gelatinase A. J. Org. Chem. 70, 5709–5712 (2005).

    CAS  PubMed  Google Scholar 

  47. Ferry, G., Boutin, J. A., Atassi, G., Fauchere, J. L. & Tucker, G. C. Selection of a histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries. Mol. Divers. 2, 135–146 (1997).

    CAS  PubMed  Google Scholar 

  48. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotech. 17, 768–774 (1999).

    CAS  Google Scholar 

  49. Acharya, M. R., Venitz, J., Figg, W. D. & Sparreboom, A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist. Updat. 7, 195–208 (2004).

    PubMed  Google Scholar 

  50. Paemen, L. et al. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem. Pharmacol. 52, 105–111 (1996). The first study on the relation of structure and function of tetracyclines and CMTs as MMPIs.

    CAS  PubMed  Google Scholar 

  51. Yrjanheikki, J. et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl Acad. Sci. USA 96, 13496–13500 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yong, V. W., Power, C., Forsyth, P. & Edwards, D. R. Metalloproteinases in biology and pathology of the nervous system. Nature Rev. Neurosci. 2, 502–511 (2001).

    CAS  Google Scholar 

  53. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    CAS  PubMed  Google Scholar 

  54. Hotchkiss, R. S. & Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    CAS  PubMed  Google Scholar 

  55. Beutler, B. Toll-like receptors: how they work and what they do. Curr. Opin. Hematol. 9, 2–10 (2002).

    PubMed  Google Scholar 

  56. Dubois, B. et al. Gelatinase B deficiency protects against endotoxin shock. Eur. J. Immunol. 32, 2163–2171 (2002).

    CAS  PubMed  Google Scholar 

  57. Nakamura, A. et al. Increased susceptibility to LPS-induced endotoxin shock in secretory leukoprotease inhibitor (SLPI)-deficient mice. J. Exp. Med. 197, 669–674 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Riedemann, N. C. et al. Regulation by C5a of neutrophil activation during sepsis. Immunity 19, 193–202 (2003).

    CAS  PubMed  Google Scholar 

  59. Abraham, E. et al. Urokinase-type plasminogen activator potentiates lipopolysaccharide-induced neutrophil activation. J. Immunol. 170, 5644–5651 (2003).

    CAS  PubMed  Google Scholar 

  60. Hu, J., Van den Steen, P. E., Dillen, C. & Opdenakker, G. Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin shock. Biochem. Pharmacol. 70, 535–544 (2005).

    CAS  PubMed  Google Scholar 

  61. Hu, J. et al. Inhibition of lethal endotoxin shock with an L-pyridylalanine containing metalloproteinase inhibitor selected by high-throughput screening of a new peptide library. Comb. Chem. High Throughput Screen. 9, 599–611 (2006).

    CAS  PubMed  Google Scholar 

  62. Opdenakker, G., Nelissen, I. & Van Damme, J. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol. 2, 747–756 (2003).

    CAS  PubMed  Google Scholar 

  63. Gijbels, K. et al. Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neurosci. Res. 36, 432–440 (1993).

    CAS  PubMed  Google Scholar 

  64. Dubois, B. et al. Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J. Clin. Invest. 104, 1507–1515 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Agrawal, S. et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203, 1007–1019 (2006). Together with references 64, 165 and 212, gives prototypic examples of knockout studies that demonstrate the role of MMPs in autoimmune diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Paemen, L., Olsson, T., Söderström, M., Van Damme, J. & Opdenakker, G. Evaluation of gelatinases and IL-6 in the cerebrospinal fluid of patients with optic neuritis, multiple sclerosis and other inflammatory neurological diseases. Eur. J. Neurol. 1, 55–63 (1994).

    CAS  PubMed  Google Scholar 

  67. Nelissen, I. et al. Gelatinase B/matrix metalloproteinase-9 cleaves interferon-β and is a target for immunotherapy. Brain 126, 1371–1381 (2003).

    PubMed  Google Scholar 

  68. Gijbels, K., Galardy, R. E., Steinman, L. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J. Clin. Invest. 94, 2177–2182 (1994). Together with reference 101, illustrates the potential of MMPIs in autoimmune and cardiovascular diseases, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hewson, A. K., Smith, T., Leonard, J. P. & Cuzner, M. L. Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31-9790. Inflamm. Res. 44, 345–349 (1995).

    CAS  PubMed  Google Scholar 

  70. Norga, K. et al. Prevention of acute autoimmune encephalomyelitis and abrogation of relapses in murine models of multiple sclerosis by the protease inhibitor D-penicillamine. Inflamm. Res. 44, 529–534 (1995).

    CAS  PubMed  Google Scholar 

  71. Dubois, B. et al. Toxicity in a double-blind, placebo-controlled pilot trial with D-penicillamine and metacycline in secondary progressive multiple sclerosis. Mult. Scler. 4, 74–78 (1998).

    CAS  PubMed  Google Scholar 

  72. Brundula, V., Rewcastle, N. B., Metz, L. M., Bernard, C. C. & Yong, V. W. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125, 1297–1308 (2002).

    PubMed  Google Scholar 

  73. Popovic, N. et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 51, 215–223 (2002).

    CAS  PubMed  Google Scholar 

  74. Weaver, A. et al. An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J. 19, 1668–1670 (2005).

    CAS  PubMed  Google Scholar 

  75. Larsen, P. H., Wells, J. E., Stallcup, W. B., Opdenakker, G. & Yong, V. W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 11127–11135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Van den Steen, P. E. et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 16, 379–389 (2002).

    CAS  PubMed  Google Scholar 

  77. Van den Steen, P. E. et al. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. Biochemistry 43, 10809–10816 (2004).

    CAS  PubMed  Google Scholar 

  78. Conway, J. G. et al. Inhibition of cartilage and bone destruction in adjuvant arthritis in the rat by a matrix metalloproteinase inhibitor. J. Exp. Med. 182, 449–457 (1995).

    CAS  PubMed  Google Scholar 

  79. DiMartino, M. et al. Anti-arthritic activity of hydroxamic acid-based pseudopeptide inhibitors of matrix metalloproteinases and TNF α processing. Inflamm. Res. 46, 211–215 (1997).

    CAS  PubMed  Google Scholar 

  80. DiMartino, M. J., High, W., Galloway, W. A. & Crimmin, M. J. Preclinical antiarthritic activity of matrix metalloproteinase inhibitors. Ann. N. Y. Acad. Sci. 732, 411–413 (1994).

    CAS  PubMed  Google Scholar 

  81. Zhang, Y. et al. Identification and characterization of 4-[[4-(2-butynyloxy)phenyl]sulfonyl]-N-hydroxy-2,2-dimethyl-(3S)thiomorpho linecarboxamide (TMI-1), a novel dual tumor necrosis factor-α-converting enzyme/matrix metalloprotease inhibitor for the treatment of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 309, 348–355 (2004).

    CAS  PubMed  Google Scholar 

  82. Conway, J. G. et al. Inhibition of tumor necrosis factor-α (TNF-α) production and arthritis in the rat by GW3333, a dual inhibitor of TNF-α-converting enzyme and matrix metalloproteinases. J. Pharmacol. Exp. Ther. 298, 900–908 (2001).

    CAS  PubMed  Google Scholar 

  83. Zernicke, R. F. et al. Administration of systemic matrix metalloproteinase inhibitors maintains bone mechanical integrity in adjuvant arthritis. J. Rheumatol. 24, 1324–1331 (1997).

    CAS  PubMed  Google Scholar 

  84. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol. 6, 508–519 (2006). A comprehensive review on atherosclerosis as an inflammatory disease.

    CAS  Google Scholar 

  85. Janssens, S. & Lijnen, H. R. What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models? Cardiovasc. Res. 69, 585–594 (2006).

    CAS  PubMed  Google Scholar 

  86. Tayebjee, M. H., Lip, G. Y. & MacFadyen, R. J. Matrix metalloproteinases in coronary artery disease: clinical and therapeutic implications and pathological significance. Curr. Med. Chem. 12, 917–925 (2005).

    CAS  PubMed  Google Scholar 

  87. Pawlak, R. et al. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc. Natl Acad. Sci. USA 102, 18201–18206 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lebeurrier, N. et al. The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol. Cell. Neurosci. 30, 552–558 (2005).

    CAS  PubMed  Google Scholar 

  89. Yang, Y., Estrada, E. Y., Thompson, J. F., Liu, W. & Rosenberg, G. A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab. 27, 697–709 (2007).

    CAS  PubMed  Google Scholar 

  90. Jian, L. K. & Rosenberg, G. A. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic. Biol. Med. 39, 71–80 (2005).

    Google Scholar 

  91. Zhao, B. Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Med. 12, 441–445 (2006).

    CAS  PubMed  Google Scholar 

  92. Galis, Z. S. et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ. Res. 91, 852–859 (2002).

    CAS  PubMed  Google Scholar 

  93. Cho, A. and Reidy, M. A. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ. Res. 91, 845–851 (2002).

    CAS  PubMed  Google Scholar 

  94. Lijnen, H. R., Soloway, P. & Collen, D. Tissue inhibitor of matrix metalloproteinases-1 impairs arterial neointima formation after vascular injury in mice. Circ. Res. 85, 1186–1191 (1999).

    CAS  PubMed  Google Scholar 

  95. Sluijter, J. P., de Kleijn, D. P. & Pasterkamp, G. Vascular remodeling and protease inhibition — bench to bedside. Cardiovasc. Res. 69, 595–603 (2006).

    CAS  PubMed  Google Scholar 

  96. Sousa, J. E., Serruys, P. W. & Costa, M. A. New frontiers in cardiology: drug-eluting stents: Part II. Circulation 107, 2383–2389 (2003).

    PubMed  Google Scholar 

  97. Lijnen, H. R. et al. Accelerated neointima formation after vascular injury in mice with stromelysin-3 (MMP-11) gene inactivation. Arterioscler. Thromb. Vasc. Biol. 19, 2863–2870 (1999).

    CAS  PubMed  Google Scholar 

  98. Silence, J., Lupu, F., Collen, D. & Lijnen, H. R. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP- 3) gene inactivation. Arterioscler. Thromb. Vasc. Biol. 21, 1440–1445 (2001).

    CAS  PubMed  Google Scholar 

  99. Luttun, A. et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 109, 1408–1414 (2004).

    CAS  PubMed  Google Scholar 

  100. Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med. 5, 1135–1142 (1999).

    CAS  PubMed  Google Scholar 

  101. Matsumura, S. et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest. 115, 599–609 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Golub, L. M. et al. Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J. Periodontal Res. 18, 516–526 (1983). A pioneering study on the anti-inflammatory effects of tetracyclines, further illustrated in references 103–107.

    CAS  PubMed  Google Scholar 

  103. Sorsa, T., Tjaderhane, L. & Salo, T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 10, 311–318 (2004).

    CAS  PubMed  Google Scholar 

  104. Sorsa, T. et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med. 38, 306–321 (2006).

    CAS  PubMed  Google Scholar 

  105. Emingil, G. et al. The effect of adjunctive low-dose doxycycline therapy on clinical parameters and gingival crevicular fluid matrix metalloproteinase-8 levels in chronic periodontitis. J. Periodontol. 75, 106–115 (2004).

    CAS  PubMed  Google Scholar 

  106. Llavaneras, A. et al. A combination of a chemically modified doxycycline and a bisphosphonate synergistically inhibits endotoxin-induced periodontal breakdown in rats. J. Periodontol. 72, 1069–1077 (2001).

    CAS  PubMed  Google Scholar 

  107. Ramamurthy, N. S. et al. Inhibition of alveolar bone loss by matrix metalloproteinase inhibitors in experimental periodontal disease. J. Periodontal. Res. 37, 1–7 (2002).

    CAS  PubMed  Google Scholar 

  108. Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    CAS  PubMed  Google Scholar 

  109. Houghton, A. M. et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest. 116, 753–759 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Churg, A. et al. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-α release. Am. J. Respir. Crit. Care Med. 167, 1083–1089 (2003).

    PubMed  Google Scholar 

  111. Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102, 647–655 (2000).

    CAS  PubMed  Google Scholar 

  112. Selman, M. et al. Matrix metalloproteinases inhibition attenuates tobacco smoke-induced emphysema in guinea pigs. Chest 123, 1633–1641 (2003).

    CAS  PubMed  Google Scholar 

  113. Gueders, M. M. et al. Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J. Immunol. 175, 2589–2597 (2005).

    CAS  PubMed  Google Scholar 

  114. Corry, D. B. et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nature Immunol. 3, 347–353 (2002).

    CAS  Google Scholar 

  115. Van Lint, P. et al. Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis. J. Immunol. 175, 7642–7649 (2005).

    CAS  PubMed  Google Scholar 

  116. Cataldo, D. D. et al. Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. Am. J. Pathol. 161, 491–498 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Vermaelen, K. Y. et al. Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J. Immunol. 171, 1016–1022 (2003).

    CAS  PubMed  Google Scholar 

  118. Corry, D. B. et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 18, 995–997 (2004).

    CAS  PubMed  Google Scholar 

  119. Kumagai, K. et al. The involvement of matrix metalloproteinases in basement membrane injury in a murine model of acute allergic airway inflammation. Clin. Exp. Allergy. 32, 1527–1534 (2002).

    CAS  PubMed  Google Scholar 

  120. Kumagai, K. et al. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J. Immunol. 162, 4212–4219 (1999).

    CAS  PubMed  Google Scholar 

  121. Lee, K. S., Jin, S. M., Kim, S. S. & Lee, Y. C. Doxycycline reduces airway inflammation and hyperresponsiveness in a murine model of toluene diisocyanate-induced asthma. J. Allergy Clin. Immunol. 113, 902–909 (2004).

    CAS  PubMed  Google Scholar 

  122. Lee, Y. C. et al. A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J. Allergy Clin. Immunol. 108, 1021–1026 (2001).

    CAS  PubMed  Google Scholar 

  123. Corbel, M. et al. Inhibition of bleomycin-induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J. Pathol. 193, 538–545 (2001).

    CAS  PubMed  Google Scholar 

  124. Tan, R. J. et al. Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice. Am. J. Respir. Cell Mol. Biol. 35, 289–297 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zuo, F. et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl Acad. Sci. USA 99, 6292–6297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Manoury, B. et al. Macrophage metalloelastase (MMP-12) deficiency does not alter bleomycin-induced pulmonary fibrosis in mice. J. Inflamm. (Lond) 3, 2 (2006).

    Google Scholar 

  127. Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 111, 635–646 (2002).

    CAS  PubMed  Google Scholar 

  128. Greenlee, K. J. et al. Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J. Immunol. 177, 7312–7321 (2006).

    CAS  PubMed  Google Scholar 

  129. Wielockx, B. et al. Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nature Med. 7, 1202–1208 (2001).

    CAS  PubMed  Google Scholar 

  130. Sitia, G. et al. MMPs are required for recruitment of antigen-nonspecific mononuclear cells into the liver by CTLs. J. Clin. Invest. 113, 1158–1167 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Muller-Pillasch, F. et al. The influence of transforming growth factor β1 on the expression of genes coding for matrix metalloproteinases and tissue inhibitors of metalloproteinases during regeneration from cerulein-induced pancreatitis. Pancreas 15, 168–175 (1997).

    CAS  PubMed  Google Scholar 

  132. Descamps, F. J., Martens, E., Ballaux, F., Geboes, K. & Opdenakker, G. In vivo activation of gelatinase B/MMP-9 by trypsin in acute pancreatitis is a permissive factor in streptozotocin-induced diabetes. J. Pathol. 204, 555–561 (2004).

    CAS  PubMed  Google Scholar 

  133. Descamps, F. J. et al. Gelatinase B is diabetogenic in acute and chronic pancreatitis by cleaving insulin. FASEB J. 17, 887–889 (2003).

    CAS  PubMed  Google Scholar 

  134. Leppert, D. et al. Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood–brain barrier damage and neurological sequelae. Clin. Infect. Dis. 31, 80–84 (2000).

    CAS  PubMed  Google Scholar 

  135. Leib, S. L. et al. Inhibition of matrix metalloproteinases and tumour necrosis factor α converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 124, 1734–1742 (2001).

    CAS  PubMed  Google Scholar 

  136. Bottcher, T., Spreer, A., Azeh, I., Nau, R. & Gerber, J. Matrix metalloproteinase-9 deficiency impairs host defense mechanisms against Streptococcus pneumoniae in a mouse model of bacterial meningitis. Neurosci. Lett. 338, 201–204 (2003).

    CAS  PubMed  Google Scholar 

  137. Yong, V. W. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nature Rev. Neurosci. 6, 931–944 (2005). Together with reference 19, gives a critical review of the protective and detrimental roles played by metalloproteinases, as deduced from knockout studies.

    CAS  Google Scholar 

  138. Porter, S., Clark, I. M., Kevorkian, L. & Edwards, D. R. The ADAMTS metalloproteinases. Biochem. J. 386, 15–27 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Opdenakker, G., Van den Steen, P. E., Laureys, G., Hunninck, K. & Arnold, B. Neutralizing antibodies in gene-defective hosts. Trends Immunol. 24, 94–100 (2003).

    CAS  PubMed  Google Scholar 

  140. Grams, F. et al. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841 (1995). Together with references 32–34 and 142, gives exemplary primary and review literature on the crystallography of MMPs and MMPIs.

    CAS  PubMed  Google Scholar 

  141. Castelhano, A. L. et al. Novel indolactam-based inhibitors of matrix metalloproteinases. Bioorg. Med. Chem. Lett. 5, 1415–1420 (2006).

    Google Scholar 

  142. Lovejoy, B. et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377 (1994).

    CAS  PubMed  Google Scholar 

  143. Brown, P. D. Matrix metalloproteinase inhibitors in the treatment of cancer. Med. Oncol. 14, 1–10 (1997).

    CAS  PubMed  Google Scholar 

  144. Wojtowicz-Praga, S. et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol. 16, 2150–2156 (1998).

    CAS  PubMed  Google Scholar 

  145. Campbell, D. A. et al. Malonyl α-mercaptoketones and α-mercaptoalcohols, a new class of matrix metalloproteinase inhibitors. Bioorg. Med. Chem. Lett. 8, 1157–1162 (1998).

    CAS  PubMed  Google Scholar 

  146. Fernandez, F. G. et al. Inhibition of obliterative airway disease development in murine tracheal allografts by matrix metalloproteinase-9 deficiency. Am. J. Transplant. 5, 671–683 (2005).

    CAS  PubMed  Google Scholar 

  147. Warner, R. L. et al. Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am. J. Respir. Cell Mol. Biol. 24, 537–544 (2001).

    CAS  PubMed  Google Scholar 

  148. McGuire, J. K., Li, Q., Parks, W. C. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol. 162, 1831–1843 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dunsmore, S. E. et al. Matrilysin expression and function in airway epithelium. J. Clin. Invest. 102, 1321–1331 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lanone, S. et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J. Clin. Invest. 110, 463–474 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Betsuyaku, T., Fukuda, Y., Parks, W. C., Shipley, J. M. & Senior, R. M. Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am. J. Pathol. 157, 525–535 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. McMillan, S. J. et al. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J. Immunol. 172, 2586–2594 (2004).

    CAS  PubMed  Google Scholar 

  153. Warner, R. L. et al. The role of metalloelastase in immune complex-induced acute lung injury. Am. J. Pathol. 158, 2139–2144 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Irie, K. et al. Impaired alveolization in mice deficient in membrane-type matrix metalloproteinase 1 (MT1–MMP). Med. Mol. Morphol. 38, 43–46 (2005).

    CAS  PubMed  Google Scholar 

  155. Atkinson, J. J. et al. Membrane-type 1 matrix metalloproteinase is required for normal alveolar development. Dev. Dyn. 232, 1079–1090 (2005).

    CAS  PubMed  Google Scholar 

  156. Garg, P. et al. Selective ablation of matrix metalloproteinase-2 exacerbates experimental colitis: contrasting role of gelatinases in the pathogenesis of colitis. J. Immunol. 177, 4103–4112 (2006).

    CAS  PubMed  Google Scholar 

  157. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999). Together with references 13, 127, 148, 172, 209 and 211, gives an excellent illustration of how Mmp -knockout mice can be used to define novel substrates. Such substrate conversion might be used in the future as a readout for testing the specificity of MMPIs in vivo.

    CAS  PubMed  Google Scholar 

  158. Kolaczkowska, E. et al. Enhanced early vascular permeability in gelatinase B (MMP-9)-deficient mice: putative contribution of COX-1-derived PGE2 of macrophage origin. J. Leukoc. Biol. 80, 125–132 (2006).

    CAS  PubMed  Google Scholar 

  159. Kolaczkowska, E. et al. Gelatinase B/matrix metalloproteinase-9 contributes to cellular infiltration in a murine model of zymosan peritonitis. Immunobiology 211, 137–148 (2006).

    CAS  PubMed  Google Scholar 

  160. Renckens, R. et al. Matrix metalloproteinase-9 deficiency impairs host defense against abdominal sepsis. J. Immunol. 176, 3735–3741 (2006).

    CAS  PubMed  Google Scholar 

  161. Castaneda, F. E. et al. Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP. Gastroenterology 129, 1991–2008 (2005).

    CAS  PubMed  Google Scholar 

  162. Uchinami, H., Seki, E., Brenner, D. A. & D'Armiento, J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 44, 420–429 (2006).

    CAS  PubMed  Google Scholar 

  163. Caterina, J. J. et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 277, 49598–49604 (2002).

    CAS  PubMed  Google Scholar 

  164. Beniash, E., Skobe, Z. & Bartlett, J. D. Formation of the dentino-enamel interface in enamelysin (MMP-20)-deficient mouse incisors. Eur. J. Oral Sci. 114 (Suppl 1), 24–29 (2006).

    CAS  PubMed  Google Scholar 

  165. Itoh, T. et al. The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J. Immunol. 169, 2643–2647 (2002).

    CAS  PubMed  Google Scholar 

  166. Mudgett, J. S. et al. Susceptibility of stromelysin1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum. 41, 110–121 (1998).

    CAS  PubMed  Google Scholar 

  167. Calander, A. M. et al. Matrix metalloproteinase-9 (gelatinase B) deficiency leads to increased severity of Staphylococcus aureus-triggered septic arthritis. Microbes Infect. 8, 1434–1439 (2006).

    CAS  PubMed  Google Scholar 

  168. Vu, T. H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998). Together with the reports on Mmp3 and Mmp7 knockouts, a pioneering study showing the spontaneous phenotypic characteristics of Mmp knockouts.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. & Werb, Z. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol. Biol. Cell 16, 3028–3039 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wright, R. W. et al. Medial collateral ligament healing in macrophage metalloelastase (MMP-12)-deficient mice. J. Orthop. Res. 24, 2106–2113 (2006).

    CAS  PubMed  Google Scholar 

  171. Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131, 5883–5895 (2004).

    CAS  PubMed  Google Scholar 

  172. Holmbeck, K. et al. The metalloproteinase MT1–MMP is required for normal development and maintenance of osteocyte processes in bone. J. Cell Sci. 118, 147–156 (2005).

    CAS  PubMed  Google Scholar 

  173. Hsu, J. Y. et al. Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury. J. Neurosci. 26, 9841–9850 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Tang, J. et al. MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J. Cereb. Blood Flow Metab. 24, 1133–1145 (2004).

    PubMed  Google Scholar 

  175. Larsen, P. H., DaSilva, A. G., Conant, K. & Yong, V. W. Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and-12 null mice. J. Neurosci. 26, 2207–2214 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Asahi, M. et al. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab. 20, 1681–1689 (2000).

    CAS  PubMed  Google Scholar 

  177. Dewil, M. et al. Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis. Neuroreport 16, 321–324 (2005).

    CAS  PubMed  Google Scholar 

  178. Wells, J. E. et al. An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J. Neurosci. 23, 10107–10115 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Larsen, P. H. & Yong, V. W. The expression of matrix metalloproteinase-12 by oligodendrocytes regulates their maturation and morphological differentiation. J. Neurosci. 24, 7597–7603 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Komori, K. et al. Absence of mechanical allodynia and Aβ-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. FEBS Lett. 557, 125–128 (2004).

    CAS  PubMed  Google Scholar 

  181. Campbell, L. G. et al. Different roles for matrix metalloproteinase-2 and matrix metalloproteinase-9 in the pathogenesis of cardiac allograft rejection. Am. J. Transplant. 5, 517–528 (2005).

    CAS  PubMed  Google Scholar 

  182. Samolov, B. et al. Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp. Eye Res. 80, 159–166 (2005).

    CAS  PubMed  Google Scholar 

  183. Ohno-Matsui, K. et al. Reduced retinal angiogenesis in MMP-2-deficient mice. Invest. Ophthalmol. Vis. Sci. 44, 5370–5375 (2003).

    PubMed  Google Scholar 

  184. Berglin, L. et al. Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest. Ophthalmol. Vis. Sci. 44, 403–408 (2003).

    PubMed  Google Scholar 

  185. Basalyga, D. M. et al. Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110, 3480–3487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Lambert, V. et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 17, 2290–2292 (2003).

    CAS  PubMed  Google Scholar 

  187. Longo, G. M. et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625–632 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ikonomidis, J. S. et al. Effects of deletion of the matrix metalloproteinase 9 gene on development of murine thoracic aortic aneurysms. Circulation 112, I242–I248 (2005).

    PubMed  Google Scholar 

  189. Sarman, S., van der Ploeg, I., Seregard, S. & Kvanta, A. Retinal vascular development and pathologic retinal angiogenesis are not impaired in matrix metalloproteinase-2 deficient mice. Curr. Eye Res. 30, 259–267 (2005).

    CAS  PubMed  Google Scholar 

  190. Kuzuya, M. et al. Effect of MMP-2 deficiency on atherosclerotic lesion formation in Apoe-deficient mice. Arterioscler. Thromb. Vasc. Biol. 26, 1120–1125 (2006).

    CAS  PubMed  Google Scholar 

  191. Mukherjee, R. et al. Time-dependent changes in myocardial structure following discrete injury in mice deficient of matrix metalloproteinase-3. J. Mol. Cell. Cardiol. 39, 259–268 (2005).

    CAS  PubMed  Google Scholar 

  192. Kure, T. et al. Corneal neovascularization after excimer keratectomy wounds in matrilysin-deficient mice. Invest. Ophthalmol. Vis. Sci. 44, 137–144 (2003).

    PubMed  Google Scholar 

  193. Pyo, R. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641–1649 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Heissig, B. et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J. Exp. Med. 202, 739–750 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ovechkin, A. V. et al. Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice. J. Appl. Physiol. 99, 2398–2405 (2005).

    CAS  PubMed  Google Scholar 

  196. Heymans, S. et al. Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am. J. Pathol. 166, 15–25 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Lindsey, M. L. et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 290, H232–H239 (2006).

    CAS  PubMed  Google Scholar 

  198. Johnson, C., Sung, H. J., Lessner, S. M., Fini, M. E. & Galis, Z. S. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ. Res. 94, 262–268 (2004).

    CAS  PubMed  Google Scholar 

  199. Jost, M. et al. Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res. 66, 5234–5241 (2006).

    CAS  PubMed  Google Scholar 

  200. Sung, H. J. et al. Matrix metalloproteinase 9 facilitates collagen remodeling and angiogenesis for vascular constructs. Tissue Eng. 11, 267–276 (2005).

    CAS  PubMed  Google Scholar 

  201. Choi, E. T. et al. Matrix metalloproteinase-9 modulation by resident arterial cells is responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 1020–1025 (2005).

    CAS  PubMed  Google Scholar 

  202. Longo, G. M. et al. MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery 137, 457–462 (2005).

    PubMed  Google Scholar 

  203. Wang, M. et al. Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response. Proc. Natl Acad. Sci. USA 96, 6885–6889 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, C. K. et al. Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-deficient mice. J. Immunol. 173, 5171–5179 (2004).

    CAS  PubMed  Google Scholar 

  205. Powell, W. C., Fingleton, B., Wilson, C. L., Boothby, M. & Matrisian, L. M. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 9, 1441–1447 (1999).

    CAS  PubMed  Google Scholar 

  206. Haro, H. et al. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J. Clin. Invest. 105, 133–141 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Haro, H. et al. Matrix metalloproteinase-7-dependent release of tumor necrosis factor-α in a model. J. Clin. Invest. 150, 143–150 (2000).

    Google Scholar 

  208. Balbin, M. et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet. 35, 252–257 (2003).

    CAS  PubMed  Google Scholar 

  209. Senft, A. P., Korfhagen, T. R., Whitsett, J. A., Shapiro, S. D. & LeVine, A. M. Surfactant protein-D regulates soluble CD14 through matrix metalloproteinase-12. J. Immunol. 174, 4953–4959 (2005).

    CAS  PubMed  Google Scholar 

  210. Pflugfelder, S. C. et al. Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am. J. Pathol. 166, 61–71 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Robinson, S. N., Seina, S. M., Gohr, J. C. & Sharp, J. G. Hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor and erythropoietin in the absence of matrix metalloproteinase-9. Stem Cells Dev. 14, 317–328 (2005).

    CAS  PubMed  Google Scholar 

  212. Liu, Z. et al. Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J. Exp. Med. 188, 475–482 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Ratzinger, G. et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol. 168, 4361–4371 (2002).

    CAS  PubMed  Google Scholar 

  214. Shipley, J. M., Wesselschmidt, R. L., Kobayashi, D. K., Ley, T. J. & Shapiro, S. D. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc. Natl Acad. Sci. USA 93, 3942–3946 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Koistinaho, M. et al. Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J. Cereb. Blood Flow Metab. 25, 460–467 (2005).

    CAS  PubMed  Google Scholar 

  216. Jodele, S. et al. The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res. 65, 3200–3208 (2005).

    CAS  PubMed  Google Scholar 

  217. Topp, S. A., Upadhya, G. A. & Strasberg, S. M. Cold preservation of isolated sinusoidal endothelial cells in MMP 9 knockout mice: effect on morphology and platelet adhesion. Liver Transpl. 10, 1041–1048 (2004).

    PubMed  Google Scholar 

  218. Andarawewa, K. L. et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 65, 10862–10871 (2005).

    CAS  PubMed  Google Scholar 

  219. Pendas, A. M. et al. Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol. Cell. Biol. 24, 5304–5313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Kang, H. R., Cho, S. J., Lee, C. G., Homer, R. J. & Elias, J. A. Transforming growth factor (TGF)-β stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. J. Biol. Chem. 282, 7723–7732 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review focuses on inflammatory and vascular diseases rather than on cancer. This implies that major cancer biology literature is not covered, for which we apologize. The present study was supported by the Fund for Scientific Research–Flanders (FWO–Vlaanderen), the Geconcerteerde OnderzoeksActies (GOA 2007-2011), the Rega Centre of Excellence (COE 05/015), the Charcot Foundation and the Belgian Foundation against Cancer. P.V.D.S. is a postdoctoral fellow of the FWO–Vlaanderen. All authors appreciate the excellent scientific help and editorial assistance of M. D. Roycik and S. Lee of Q.-X. Sang's laboratory, and V. Dubois of G.O.'s laboratory. This article is dedicated to the late Ofer Lider of the Weizmann Institute of Science, in memory of his friendship and his insights that the environmental contexts need to be better investigated and understood before any intervention whatsoever.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghislain Opdenakker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Structure activity relations of MMP inhibitor classes (PDF 1533 kb)

Supplementary information S2 (table)

Overview of gelatinase B–/MMP–9–inhibitors in biology. (PDF 596 kb)

Related links

Related links

DATABASES

OMIM

Asthma

chronic obstructive pulmonary disease

multiple sclerosis

rheumatoid arthritis

stroke

FURTHER INFORMATION

Department of Chemistry and Biochemistry, Florida State University

Rega Institute for Medical Research

Glossary

Tissue inhibitors of metalloproteinases

Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs). Four are present in humans. This redundancy illustrates the importance of the fine-tuning needed for MMP inhibitors. Some TIMPs possess other functions than regulation of extracellular matrix turnover.

Chemokines

A family of structurally related, small proteins that have potent chemotactic activity and mediate migration of inflammatory cells from blood vessels to the site of inflammation and leukocyte homing.

Atherosclerosis

Atherosclerosis starts by the formation of a fatty streak, an accumulation of lipid-loaded macrophages in the tunica intima. The fatty streak evolves into an atherosclerotic plaque by the migration and proliferation of smooth muscle cells, the formation of a necrotic core and a fibrous cap with extracellular matrix components.

Substrate-based design

Substrate-based design of hydrolase inhibitors is done on the basis of the definition of characteristics of preferred substrates. Shared properties of such substrates are used as anchor points in the design of inhibitors. Usually the scissile bond between P1 and P1′ is chemically modified to prevent the hydrolysis of the substrate.

Structure-based design

Structure-based design of enzyme inhibitors uses the three-dimensional structural information of the catalytic site of an enzyme. With the use of molecular-modelling techniques, series of possible small-inhibitor structures are docked into the active site and selected.

Tetracyclines and derivatives.

Tetracyclines and chemically modified tetracyclines (CMTs) have been used to counteract extracellular matrix turnover and as anti-inflammatory agents. The binding of tetracycline and CMTs with pro- or active matrix metalloproteinases (MMPs) results in the disruption of the normal conformation of the protein structure and leaves the enzymes inactive and therefore vulnerable to degradation into small molecule fragments. CMTs have also been shown to downregulate gene expression of particular MMPs.

Neutrophils

Neutrophils are the most abundant cell type in the human circulation. Lipopolysaccharide acts directly on these cells in endotoxinaemia. This results in the release of pro-matrix metalloproteinase 8 (MMP8) and pro-MMP9, which are activated by, for example, reactive oxygen intermediates, and of lysozyme, which generates peptidoglycan fragments. An important aspect of endotoxinaemia and septic shock is its acuteness, based on fast degranulation of the neutrophils.

Foamy macrophages

Macrophages in the arterial wall that ingest oxidized low-density lipoprotein and assume a foamy appearance. These cells secrete various substances involved in further plaque growth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Van den Steen, P., Sang, QX. et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6, 480–498 (2007). https://doi.org/10.1038/nrd2308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing