Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Salt, aldosterone, and insulin resistance: impact on the cardiovascular system

Abstract

Hypertension and type 2 diabetes mellitus (T2DM) are powerful risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), both of which are leading causes of morbidity and mortality worldwide. Research into the pathophysiology of CVD and CKD risk factors has identified salt sensitivity and insulin resistance as key elements underlying the relationship between hypertension and T2DM. Excess dietary salt and caloric intake, as commonly found in westernized diets, is linked not only to increased blood pressure, but also to defective insulin sensitivity and impaired glucose homeostasis. In this setting, activation of the sympathetic nervous system and the renin–angiotensin–aldosterone system (RAAS), as well as increased signaling through the mineralocorticoid receptor (MR), result in increased production of reactive oxygen species and oxidative stress, which in turn contribute to insulin resistance and impaired vascular function. In addition, insulin resistance is not limited to classic insulin-sensitive tissues such as skeletal muscle, but it also affects the cardiovascular system, where it participates in the development of CVD and CKD. Current clinical knowledge points towards an impact of salt restriction, RAAS blockade, and MR antagonism on cardiovascular and renal protection, but also on improved insulin sensitivity and glucose homeostasis.

Key Points

  • A pathophysiological link exists between hypertension and insulin resistance

  • Excess dietary salt intake has been linked to activation of the sympathetic nervous system (SNS), decreased insulin sensitivity, and activation of the renin–angiotensin–aldosterone system (RAAS)

  • SNS and RAAS activation and decreased insulin sensitivity participate in the pathogenesis of vascular dysfunction, which seems to be mediated by increased inflammation and oxidative stress

  • Insulin resistance affects classic insulin target tissues such as skeletal muscle, but also cardiovascular and renal tissue where it contributes to the development of cardiovascular and chronic kidney disease

  • Current studies suggest a beneficial role of mineralocorticoid receptor blockade, RAAS modulation, and decreased sodium intake on hypertension, insulin resistance, and cardiovascular and renal diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic and nongenomic actions of aldosterone and interaction with the mineralocorticoid receptor.

Similar content being viewed by others

References

  1. Lastra, G., Manrique, C. M. & Sowers, J. R. Obesity, cardiometabolic syndrome, and chronic kidney disease: the weight of the evidence. Adv. Chronic Kidney Dis. 13, 365–373 (2006).

    Article  Google Scholar 

  2. Lastra-Lastra, G., Sowers, J. R., Restrepo-Erazo, K., Manrique-Acevedo, C. & Lastra-González, G. Role of aldosterone and angiotensin II in insulin resistance: an update. Clin. Endocrinol. (Oxf.) 71, 1–6 (2009).

    Article  CAS  Google Scholar 

  3. Strazzullo, P., Galletti, F. & Barba, G. Altered renal handling of sodium in human hypertension: short review of the evidence. Hypertension 41, 1000–1005 (2003).

    Article  CAS  Google Scholar 

  4. De Wardener, H. E. & MacGregor, G. A. The natriuretic hormone and essential hypertension. Lancet 1, 1450–1454 (1982).

    Article  CAS  Google Scholar 

  5. Houston, M. C. Sodium and hypertension. A review. Arch. Intern. Med. 146, 179–185 (1986).

    Article  CAS  Google Scholar 

  6. Orlov, S. N. & Mongin, A. A. Salt-sensing mechanisms in blood pressure regulation and hypertension. Am. J. Physiol. Heart Circ. Physiol. 293, H2039–H2053 (2007).

    Article  CAS  Google Scholar 

  7. Grim, C. E. et al. Racial differences in blood pressure in Evans County, Georgia: relationship to sodium and potassium intake and plasma renin activity. J. Chron. Dis. 33, 155–162 (1980).

    Article  Google Scholar 

  8. Sacks, F. M. et al. Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH): A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann. Epidemiol. 5, 108–118 (1995).

    Article  CAS  Google Scholar 

  9. Sacks, F. M. et al. for the DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 344, 3–10 (2001).

    Article  CAS  Google Scholar 

  10. Weinberger, M. H., Miller, J. Z., Luft, F. C., Grim, C. E. & Fineberg, N. S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8, 127–134 (1996).

    Google Scholar 

  11. Weinberger, M. H. Salt sensitivity of blood pressure in humans. Hypertension 27, 481–490 (1996).

    Article  CAS  Google Scholar 

  12. Franco, V. & Oparil, S. Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J. Am. Coll. Nutr. 25 (Suppl. 3), 247S–255S (2006).

    Article  CAS  Google Scholar 

  13. Skrabal, F., Hamberger, L. & Ledochowski, M. Inherited salt sensitivity in normotensive humans as a cause of essential hypertension: a new concept. J. Cardiovasc. Pharmacol. 6 (Suppl. 1), S215–S223 (1984).

    Article  Google Scholar 

  14. Weinberger, M. H., Fineberg, N. S., Fineberg, E. & Weinberger, M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 27, 429–432 (2001).

    Article  Google Scholar 

  15. Rocchini, A. P. et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N. Engl. J. Med. 321, 580–585 (1989).

    Article  CAS  Google Scholar 

  16. Zavaroni, I. et al. Association between salt sensitivity and insulin concentrations in patients with hypertension. Am. J. Hypertens. 8, 855–858 (1995).

    Article  CAS  Google Scholar 

  17. Sharma, A. M., Ruland, K., Spies, K. P. & Distler, A. Salt sensitivity in young normotensive subjects is associated with a hyperinsulinemic response to oral glucose. J. Hypertens. 9, 329–335 (1991).

    Article  CAS  Google Scholar 

  18. Galletti, F. et al. NaCl sensitivity of essential hypertensive patients is related to insulin resistance. J. Hypertens. 15, 1485–1491 (1997).

    Article  CAS  Google Scholar 

  19. Melander, O., Groop, L. & Hulthén, U. L. Effect of salt on insulin sensitivity differs according to gender and degree of salt sensitivity. Hypertension 35, 827–831 (2000).

    Article  CAS  Google Scholar 

  20. Agarwal, M. K., Mirshahi, F., Mirshahi, M. & Rostene, W. Immunochemical detection of the mineralocorticoid receptor in rat brain. Neuroendocrinology 5, 575–580 (1993).

    Article  Google Scholar 

  21. Geerling, J. C., Kawata, M. & Loewy, A. D. Aldosterone-sensitive neurons in the rat central nervous system. J. Comp. Neurol. 494, 515–527 (2006).

    Article  Google Scholar 

  22. Connell, J. M. & Davies, E. The new biology of aldosterone. J. Endocrinol. 186, 1–20 (2005).

    Article  CAS  Google Scholar 

  23. Gomez-Sanchez, E. P. Intracerebroventricular infusion of aldosterone induces hypertension in rats. Endocrinology 118, 819–823 (1986).

    Article  CAS  Google Scholar 

  24. DiBona, G. F. & Sawin, L. L. Effect of arterial baroreceptor denervation on sodium balance. Hypertension 40, 547–551 (2002).

    Article  CAS  Google Scholar 

  25. Sakai, R. R., McEwen, B. S., Fluharty, S. J. & Ma, L. Y. The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int. 57, 1337–1345 (2000).

    Article  CAS  Google Scholar 

  26. Huang, B. S., Van Vliet, B. N. & Leenen, F. H. Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. Am. J. Physiol. Heart Circ. Physiol. 287, H1160–H2116 (2004).

    Article  CAS  Google Scholar 

  27. Huang, B. S., Amin, M. S. & Leenen, F. H. The central role of the brain in salt-sensitive hypertension. Curr. Opin. Cardiol. 21, 295–304 (2006).

    Article  Google Scholar 

  28. Huang, B. S. et al. Activation of brain renin–angiotensin–aldosterone system by central sodium in Wistar rats. Am. J. Physiol. Heart Circ. Physiol. 291, H1109–H1117 (2006).

    Article  CAS  Google Scholar 

  29. O'Donaughy, T. L., Qi, Y. & Brooks, V. L. Central action of increased osmolality to support blood pressure in deoxycorticosterone acetate-salt rats. Hypertension 48, 658–663 (2006).

    Article  CAS  Google Scholar 

  30. Huang, B. S., Zheng, H., Patel, K. P. & Leenen, F. H. Central infusion of aldosterone decreases nNOS and increases AT1R and components of NADPH oxidase within the PVN [abstract P015]. Hypertension 52, e59 (2008).

    Article  Google Scholar 

  31. Zhang, Z. H., Yu, Y., Kang, Y. M., Wei, S. G. & Felder, R. B. Aldosterone acts centrally to increase brain renin–angiotensin system activity and oxidative stress in normal rats. Am. J. Physiol. Heart Circ. Physiol. 294, H1067–H1074 (2008).

    Article  CAS  Google Scholar 

  32. Yu, Y. et al. Does aldosterone upregulate the brain renin–angiotensin system in rats with heart failure? Hypertension 51, 727–733 (2008).

    Article  CAS  Google Scholar 

  33. Wescott, K. V., Huang, B. S. & Leenen, F. H. Brain renin–angiotensin–aldosterone system and ventricular remodeling after myocardial infarct: a review. Can. J. Physiol. Pharmacol. 87, 979–988 (2009).

    Article  Google Scholar 

  34. Felder, R. B. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure. Exp. Physiol. 95, 19–25 (2010).

    Article  CAS  Google Scholar 

  35. Shi, P., Raizada, M. K. & Sumners, C. Brain cytokines as neuromodulators in cardiovascular control. Clin. Exp. Pharmacol. Physiol. 37, e52–e57 (2010).

    Article  CAS  Google Scholar 

  36. Dunn, A. J. Cytokine activation of the HPA axis. Ann. NY Acad. Sci. 917, 608–617 (2000).

    Article  CAS  Google Scholar 

  37. Francis, J., Weiss, R. M., Johnson, A. K. & Felder, R. B. Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R328–R335 (2003).

    Article  CAS  Google Scholar 

  38. Francis, J., Beltz, T., Johnson, A. K. & Felder, R. B. Mineralocorticoids act centrally to regulate blood-borne tumor necrosis factor-alpha in normal rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1402–R1409 (2003).

    Article  CAS  Google Scholar 

  39. Lastra, G., Manrique, C., McFarlane, S. I. & Sowers, J. R. Cardiometabolic syndrome and chronic kidney disease. Curr. Diab. Rep. 6, 207–212 (2006).

    Article  Google Scholar 

  40. Modan, M. et al. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J. Clin. Invest. 75, 809–817 (1985).

    Article  CAS  Google Scholar 

  41. Després, J. P. et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334, 952–958 (1996).

    Article  Google Scholar 

  42. Spät, A. & Hunyady, L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol. Rev. 84, 489–539 (2004).

    Article  Google Scholar 

  43. Brilla, C. G. & Weber, K. T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 120, 893–901 (1992).

    CAS  PubMed  Google Scholar 

  44. Stas, S. et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin–angiotensin–aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 148, 3773–3780 (2007).

    Article  CAS  Google Scholar 

  45. Lastra, G. et al. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am. J. Physiol. Endocrinol. Metab. 295, E110–E116 (2008).

    Article  CAS  Google Scholar 

  46. Endemann, D. H., Touyz, R. M., Iglarz, M., Savoia, C. & Schiffrin, E. L. Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 43, 1252–1257 (2004).

    Article  CAS  Google Scholar 

  47. Bochud, M. et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48, 239–245 (2006).

    Article  CAS  Google Scholar 

  48. Verhave, J. C. et al. for the PREVEND Study Group. Sodium intake affects urinary albumin excretion especially in overweight subjects. J. Intern. Med. 256, 324–330 (2004).

    Article  CAS  Google Scholar 

  49. Fujita, T. Mineralocorticoid receptors, salt-sensitive hypertension, and metabolic syndrome. Hypertension 55, 813–818 (2010).

    Article  CAS  Google Scholar 

  50. Montezano, A. C. & Touyz, R. M. Networking between systemic angiotensin II and cardiac mineralocorticoid receptors. Hypertension 52, 1016–1018 (2008).

    Article  CAS  Google Scholar 

  51. Yamamuro, M. et al. Aldosterone, but not angiotensin II, reduces angiotensin converting enzyme 2 gene expression levels in cultured neonatal rat cardiomyocytes. Circ. J. 72, 1346–1350 (2008).

    Article  CAS  Google Scholar 

  52. Zhang, A. D. et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension 52, 1060–1067 (2008).

    Article  CAS  Google Scholar 

  53. Lastra, G., Manrique, C. M. & Sowers, J. R. Obesity, cardiometabolic syndrome, and chronic kidney disease: the weight of the evidence. Adv. Chronic Kidney Dis. 13, 365–373 (2006).

    Article  Google Scholar 

  54. Rossi, G. P. et al. for the Primary Aldosteronism Prevalence in hypertension Study Investigators. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J. Clin. Endocrinol. Metab. 93, 2566–2571 (2008).

    Article  CAS  Google Scholar 

  55. Jeon, J. H. et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 22, 1502–1511 (2008).

    Article  CAS  Google Scholar 

  56. Caprio, M. et al. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J. 21, 2185–2194 (2007).

    Article  CAS  Google Scholar 

  57. Wang, H. et al. Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions. J. Hypertension 26, 1453–1462 (2008).

    Article  CAS  Google Scholar 

  58. Kawarazaki, H. et al. Mineralocorticoid receptor activation contributes to salt-induced hypertension and renal injury in prepubertal Dahl salt-sensitive rats. Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfq197.

    Article  CAS  Google Scholar 

  59. Nagase, M., Matsui, H., Shibata, S., Gotoda, T. & Fujita, T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50, 877–883 (2007).

    Article  CAS  Google Scholar 

  60. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148 (1994).

    Article  CAS  Google Scholar 

  61. Copper, S. A. et al. Renin–angiotensin–aldosterone system and oxidative stress in cardiovascular insulin resistance. Am. J. Physiol. Heart Circ. Physiol. 293, H2009–H2023 (2007).

    Article  Google Scholar 

  62. Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    Article  CAS  Google Scholar 

  63. Shimamoto, K. et al. Does insulin resistance participate in an impaired glucose tolerance in primary aldosteronism? J. Hum. Hypertens. 8, 755–759 (1994).

    CAS  PubMed  Google Scholar 

  64. Brown, N. J. Aldosterone and vascular inflammation. Hypertension 51, 161–167 (2008).

    Article  CAS  Google Scholar 

  65. Manrique, C., Lastra, G., Whaley-Connel, A. & Sowers, J. R. Hypertension and the cardiometabolic syndrome. J. Clin. Hypertens. (Greenwich) 7, 471–476 (2005).

    Article  Google Scholar 

  66. Yusuf, S. et al. for the Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 145–153 (2000).

    Article  CAS  Google Scholar 

  67. Hansson, L. et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353, 611–616 (1999).

    Article  CAS  Google Scholar 

  68. Pfeffer, M. A. et al. for the CHARM Investigators and Committees. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362, 759–766 (2003).

    Article  CAS  Google Scholar 

  69. Barzilay, J. I. et al. for the ALLHAT Collaborative Research Group. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of hypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch. Intern. Med. 166, 2191–2201 (2006).

    Article  CAS  Google Scholar 

  70. Shindler, D. M. et al. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am. J. Cardiol. 77, 1017–1020 (1996).

    Article  CAS  Google Scholar 

  71. Devereux, R. B. et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation 110, 1456–1462 (2004).

    Article  CAS  Google Scholar 

  72. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  Google Scholar 

  73. Pitt, B. et al. for the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  Google Scholar 

  74. Bosch, J. et al. for the DREAM Trial Investigators. Effect of ramipril on the incidence of diabetes. N. Engl. J. Med. 355, 1551–1562 (2006).

    Article  Google Scholar 

  75. Sowers, J. R., Whaley-Connell, A. & Epstein, M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann. Intern. Med. 150, 776–783 (2009).

    Article  Google Scholar 

  76. McMurray, J. J. et al. for the NAVIGATOR Study Group. Effect of valsartan on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1477–1490 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G. Lastra, S. Dhuper, M. S. Johnson, and J. R. Sowers contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to James R. Sowers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lastra, G., Dhuper, S., Johnson, M. et al. Salt, aldosterone, and insulin resistance: impact on the cardiovascular system. Nat Rev Cardiol 7, 577–584 (2010). https://doi.org/10.1038/nrcardio.2010.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing