Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PIN1, the cell cycle and cancer

Key Points

  • PIN1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase family of proteins, which encompasses the cyclophilins, FK506-binding proteins and the parvulins.

  • PIN1 binds to and alters the conformation of phosphoproteins by catalysing the rapid cis to trans isomerization of proline amide bonds contained within the target proteins.

  • The isomerization of proteins by PIN1 results in an alteration of protein structure and/or function, which is often coupled to a change in protein stabilization.

  • PIN1 was originally identified as a cell cycle protein (mitotic). Subsequently, many cell-cycle regulatory proteins (G1/S, M and checkpoint) were identified as PIN1 binding partners. Given its ability to regulate these important proteins, PIN1 is suggested to act a molecular 'timer' of the cell cycle.

  • PIN1 is overexpressed in some human cancers in correlation with cyclin D1 and β-catenin overexpression. Such correlations have led to the idea that PIN1 might be tumour promoting.

  • The loss of PIN1 also promotes the stabilization of two important oncogenes, MYC and cyclin E. The germline deletion of Pin1 promotes rapid genomic instability in mouse embryo fibroblasts in a p53-dependent manner that encourages more aggressive Ras-induced transformation of these PIN1-null cells. Therefore, it has been suggested that PIN1 might act as a tumour suppressor.

  • The contradictory experimental observations regarding the function of PIN1 in cancer remain enigmatic, but raise the possibility that PIN1 can either function as a tumour promoter or conditional tumour suppressor.

Abstract

PIN1 is a peptidyl-prolyl isomerase that can alter the conformation of phosphoproteins and so affect protein function and/or stability. PIN1 regulates a number of proteins important for cell-cycle progression and, based on gain- and loss-of-function studies, is presumed to operate as a molecular timer of this important process. Therefore, it seems logical that alterations in the level of PIN1 can influence hyperproliferative diseases such as cancer. However, the precise role of PIN1 in cancer remains controversial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIN1 catalyses the cis–trans isomerization of prolyl bonds.
Figure 2: Functional targets of PIN1.
Figure 3: PIN1 promotes cyclin E degradation mediated by the FBXW7 E3 ligase.

Similar content being viewed by others

References

  1. Galat, A. Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity—targets—functions. Curr. Top. Med. Chem. 3, 1315–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Lu, K. P. et al. Targeting carcinogenesis: a role for the prolyl isomerase Pin1? Mol. Carcinog. 45, 397–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440, 528–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996). PIN1 is identified and described for the first time in mammals as a NIMA-interacting protein with a potential role as a negative regulator of mitosis.

    Article  CAS  PubMed  Google Scholar 

  5. Hanes, S. D., Shank, P. R. & Bostian, K. A. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5, 55–72 (1989). ESS1P, the yeast PIN1 homologue, is described as an essential protein in yeast, a fact that did not hold true in mammalian systems.

    Article  CAS  PubMed  Google Scholar 

  6. Crenshaw, D. G., Yang, J., Means, A. R. & Kornbluth, S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 17, 1315–1327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stukenberg, P. T. & Kirschner, M. W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Winkler, K. E., Swenson, K. I., Kornbluth, S. & Means, A. R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Maleszka, R., Hanes, S. D., Hackett, R. L., de Couet, H. G. & Miklos, G. L. The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 93, 447–451 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999). The first of several papers to describe the germline deletion of PIN1. The only phenotype described in this publication was that PIN1-null were unable to efficiently re-enter the cell cycle from a quiescent state. Interestingly, no one has yet provided a direct mechanistic explanation for this phenomenon.

    Article  CAS  PubMed  Google Scholar 

  12. Maleszka, R., Lupas, A., Hanes, S. D. & Miklos, G. L. The dodo gene family encodes a novel protein involved in signal transduction and protein folding. Gene 203, 89–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, T., McRackan, D., Vincent, T. S. & Gert de Couet, H. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nature Cell Biol. 3, 538–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Liou, Y. C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl Acad. Sci. USA 99, 1335–1340 (2002). Describes notable phenotypes in Pin1 -deficient mice, and contains the first description of a non-mitotic target for PIN1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Atchison, F. W., Capel, B. & Means, A. R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development 130, 3579–3586 (2003). Elegantly describes how PIN1 can serve as a molecular 'timer' of G1/S progression, and shows that the lack of this function in the PIN1-null mouse leads to fewer divisions of the primordial germ cells and thus to infertility.

    Article  CAS  PubMed  Google Scholar 

  16. Atchison, F. W. & Means, A. R. Spermatogonial depletion in adult Pin1-deficient mice. Biol. Reprod. 69, 1989–1997 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. You, H. et al. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J. Cell. Biochem. 84, 211–216 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Joseph, J. D., Daigle, S. N. & Means, A. R. PINA is essential for growth and positively influences NIMA function in Aspergillus nidulans. J. Biol. Chem. 279, 32373–32384 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ryo, A. et al. PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell Biol. 22, 5281–5295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yeh, E. S., Lew, B. O. & Means, A. R. The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J. Biol. Chem. 281, 241–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of b-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wulf, G. M. et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J. 20, 3459–3472 (2001). The first paper to suggest that PIN1 might act as a tumour-promoting factor. The authors provide data that shows that PIN1 is upregulated in human tumour samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol. 6, 308–318 (2004). This paper provides a detailed molecular mechanism of how PIN1 regulates the stability of one of its important G1 targets, MYC, as well as the first data suggesting the possibility that PIN1 may act as a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  24. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002). An important set of publications that identify p53 as a target of PIN1 and demonstrate that p53 is regulated by PIN1 in response to cell stress. PIN1 is shown to be required for p53 stabilization, which is necessary for its activity as a transcription factor.

    Article  CAS  PubMed  Google Scholar 

  27. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yi, P. et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell. Biol. 25, 9687–9699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ayala, G. et al. The prolyl isomerase Pin1 is a novel prognostic marker in human prostate cancer. Cancer Res. 63, 6244–6251 (2003).

    CAS  PubMed  Google Scholar 

  30. Bao, L. et al. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, S. Y. et al. Activation of β-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-β-catenin interaction. Mol. Cell. Biol. 26, 929–939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukuchi, M. et al. Prolyl isomerase Pin1 expression predicts prognosis in patients with esophageal squamous cell carcinoma and correlates with cyclinD1 expression. Int. J. Oncol. 29, 329–334 (2006).

    CAS  PubMed  Google Scholar 

  33. Kim, C. J. et al. Pin1 overexpression in colorectal cancer and its correlation with aberrant beta-catenin expression. World J. Gastroenterol. 11, 5006–5009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, C. J. et al. Pin1 gene mutation is a rare event in gastric cancer. Apmis 114, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kokkinakis, D. M., Liu, X. & Neuner, R. D. Modulation of cell cycle and gene expression in pancreatic tumor cell lines by methionine deprivation (methionine stress): implications to the therapy of pancreatic adenocarcinoma. Mol. Cancer Ther. 4, 1338–1348 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kuramochi, J. et al. High Pin1 expression is associated with tumor progression in colorectal cancer. J. Surg. Oncol. 94, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Li, H. et al. Expression of Pin1 and Ki67 in cervical cancer and their significance. J. Huazhong Univ. Sci. Technolog. Med. Sci. 26, 120–122 (2006).

    Article  PubMed  Google Scholar 

  38. Li, H. Y. et al. Expression and clinical significance of Pin1 and Cyclin D1 in cervical cancer cell lines and cervical epithelial tissues]. Ai Zheng 25, 367–372 (2006).

    CAS  PubMed  Google Scholar 

  39. Li, H. Y. et al. Short hairpin RNA silences Pin1 and affects proliferation and apoptosis in HeLa cell line. Zhonghua Fu Chan Ke Za Zhi 41, 417–421 (2006).

    PubMed  Google Scholar 

  40. Lu, K. P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci. 29, 200–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, K. P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Miyashita, H., Mori, S., Motegi, K., Fukumoto, M. & Uchida, T. Pin1 is overexpressed in oral squamous cell carcinoma and its levels correlate with cyclin D1 overexpression. Oncol. Rep. 10, 455–461 (2003).

    PubMed  Google Scholar 

  43. Miyashita, H., Uchida, T., Mori, S., Echigo, S. & Motegi, K. Expression status of Pin1 and cyclins in oral squamous cell carcinoma: Pin1 correlates with Cyclin D1 mRNA expression and clinical significance of cyclins. Oncol. Rep. 10, 1045–1048 (2003).

    CAS  PubMed  Google Scholar 

  44. Nakashima, M. et al. Cyclin D1 overexpression in thyroid tumours from a radio-contaminated area and its correlation with Pin1 and aberrant β-catenin expression. J. Pathol. 202, 446–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ryo, A., Liou, Y. C., Lu, K. P. & Wulf, G. Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J. Cell Sci. 116, 773–783 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ryo, A. et al. Stable suppression of tumorigenicity by Pin1-targeted RNA interference in prostate cancer. Clin. Cancer Res. 11, 7523–7531 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Sasaki, T. et al. An immunohistochemical scoring system of prolyl isomerase Pin1 for predicting relapse of prostate carcinoma after radical prostatectomy. Pathol. Res. Pract. 202, 357–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D. & Lu, K. P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wulf, G., Ryo, A., Liou, Y. C. & Lu, K. P. The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res. 5, 76–82 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, H. et al. Pin1 contributes to cervical tumorigenesis by regulating cyclin D1 expression. Oncol. Rep. 16, 491–496 (2006).

    CAS  PubMed  Google Scholar 

  51. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Akli, S. et al. Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res. 64, 3198–3208 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Willmarth, N. E., Albertson, D. G. & Ethier, S. P. Chromosomal instability and lack of cyclin E regulation in hCdc4 mutant human breast cancer cells. Breast Cancer Res. 6, R531–R539 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ekholm-Reed, S. et al. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol. 165, 789–800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Huang, H. K., Forsburg, S. L., John, U. P., O'Connell, M. J. & Hunter, T. Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe. J. Cell Sci. 114, 3779–3788 (2001).

    CAS  PubMed  Google Scholar 

  58. Liao, L. et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1. J. Steroid Biochem. Mol. Biol. 83, 3–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W. & Lu, K. P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Toledo, F. et al. Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression. Mol. Cell Biol. 27, 1425–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Takahashi, K. et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 11 December 2006 [Epub ahed of print].

  63. Reilly, K. M. et al. Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc. Natl Acad. Sci. USA 101, 13008–13013 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. To, M. D. et al. A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nature Genet. 38, 926–930 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Massague, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  68. Mazelin, L. et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature 431, 80–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Pang, R. et al. PIN1 overexpression and β-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23, 4182–4186 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Pang, R. W. et al. PIN1 expression contributes to hepatic carcinogenesis. J. Pathol. 210, 19–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Oesterreich, S. et al. High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer. Br. J. Cancer 84, 493–498 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pabst, T. et al. Frequent clonal loss of heterozygosity but scarcity of microsatellite instability at chromosomal breakpoint cluster regions in adult leukemias. Blood 88, 1026–1034 (1996).

    CAS  PubMed  Google Scholar 

  73. Knosel, T. et al. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch. 440, 187–194 (2002).

    Article  PubMed  CAS  Google Scholar 

  74. Jin, Y. & Mertens, F. Chromosome abnormalities in oral squamous cell carcinomas. Eur. J. Cancer B Oral. Oncol. 29B, 257–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Riva, P. et al. 19p deletion in recurring leiomyosarcoma lesions from the same patient. Cancer Genet. Cytogenet. 119, 102–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953–5960 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Chao, S. H., Greenleaf, A. L. & Price, D. H. Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Res. 29, 767–773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Uchida, T. et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10, 15–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Wildemann, D. et al. Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J. Med. Chem. 49, 2147–2150 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, X. J., Xu, B., Mullins, A. B., Neiler, F. K. & Etzkorn, F. A. Conformationally locked isostere of phosphoSer-cis-Pro inhibits Pin1 23-fold better than phosphoSer-trans-Pro isostere. J. Am. Chem. Soc. 126, 15533–15542 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Gemmill, T. R., Wu, X. & Hanes, S. D. Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in Saccharomyces cerevisiae. J. Biol. Chem. 280, 15510–15517 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, C. X. & Gao, Y. Aberrant expression of b-catenin, Pin1 and cyclin D1 in salivary adenoid cystic carcinoma: relation to tumor proliferation and metastasis. Oncol. Rep. 16, 505–511 (2006).

    CAS  PubMed  Google Scholar 

  83. Zhou, P., Jiang, W., Weghorst, C. M. & Weinstein, I. B. Overexpression of cyclin D1 enhances gene amplification. Cancer Res. 56, 36–39 (1996).

    CAS  PubMed  Google Scholar 

  84. Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. & Gutkind, J. S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081–35084 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Messenger, M. M. et al. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J. Biol. Chem. 277, 23054–23064 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, J. et al. Interaction of Pin1 with Nek6 and characterization of their expression correlation in Chinese hepatocellular carcinoma patients. Biochem. Biophys. Res. Commun. 341, 1059–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Eckerdt, F. et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J. Biol. Chem. 280, 36575–36583 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Berger, M., Stahl, N., Del Sal, G. & Haupt, Y. Mutations in proline 82 of p53 impair its activation by Pin1 and Chk2 in response to DNA damage. Mol. Cell. Biol. 25, 5380–5388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Campaner, S., Kaldis, P., Izraeli, S. & Kirsch, I. R. Sil phosphorylation in a Pin1 binding domain affects the duration of the spindle checkpoint. Mol. Cell. Biol. 25, 6660–6672 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Basu, A. et al. Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation. Neoplasia 4, 218–227 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Basu, A. & Haldar, S. Signal-induced site specific phosphorylation targets Bcl2 to the proteasome pathway. Int. J. Oncol. 21, 597–601 (2002).

    CAS  PubMed  Google Scholar 

  92. Becker, E. B. & Bonni, A. Pin1 mediates neural-specific activation of the mitochondrial apoptotic machinery. Neuron 49, 655–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Brondani, V., Schefer, Q., Hamy, F. & Klimkait, T. The peptidyl-prolyl isomerase Pin1 regulates phospho-Ser77 retinoic acid receptor alpha stability. Biochem. Biophys. Res. Commun. 328, 6–13 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research cited from the author's laboratory was funded by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Means.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

IC50S

The concentration of a drug giving a 50% inhibition of the activity of a target enzyme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, E., Means, A. PIN1, the cell cycle and cancer. Nat Rev Cancer 7, 381–388 (2007). https://doi.org/10.1038/nrc2107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2107

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing