Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin ligases: cell-cycle control and cancer

Key Points

  • Two major classes of ubiquitin ligases, the SKP1–CUL1–F-box-protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C), have a central role in cell-cycle regulation.

  • The SCF complex and APC/C are structurally similar. Each is constituted of common subunits and a variable substrate-recognition subunit (F-box proteins for the SCF complex and activators for the APC/C). Three F-box proteins in the SCF complex — S-phase kinase-associated protein 2 (SKP2), F-box and WD-40 domain protein 7 (FBW7) and β-transducin repeat-containing protein (β-TRCP) — and two activators in the APC/C — cell division cycle 20 (CDC20) and CDH1 (also known as HCT1) — are the most important in cell-cycle regulation.

  • SKP2 targets negative regulators of the cell cycle such as p27, p21 and p57 for degradation, and thereby promotes cell-cycle progression during S and G2 phases. SKP2 is upregulated in many human cancers.

  • FBW7 induces the degradation of positive regulators of the cell cycle, such as MYC, JUN, cyclin E and Notch. FBW7 is often mutated in a subset of human cancers.

  • β-TRCP is a versatile F-box protein that recognizes several cell-cycle regulators — EMI1/2, WEE1A and CDC25A/B — in addition to its classical substrates, β-catenin and IκB. In some cancers, β-TRCP mutation or overexpression is found.

  • CDC20 targets securin and mitotic cyclins for destruction, and thereby promotes sister-chromatid separation. CDC20 is the crucial mediator of the spindle checkpoint, which prevents aneuploidy and genomic instability. CDC20 is overexpressed in some cancers, although in others the CDC20 gene is mutated or deleted.

  • CDH1 facilitates exit from M phase and maintains G1 phase by mediating the degradation of mitotic cyclins, non-CDK (cyclin-dependent kinase) mitotic kinases and some regulators of the formation of pre-replicative complexes. Deregulated expression or mutation of CDH1 as well as of most CDH1 targets have been described in human cancers.

Abstract

A driving force of the cell cycle is the activation of cyclin-dependent kinases (CDKs), the activities of which are controlled by the ubiquitin-mediated proteolysis of key regulators such as cyclins and CDK inhibitors. Two ubiquitin ligases, the SKP1–CUL1–F-box-protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C), are responsible for the specific ubiquitylation of many of these regulators. Deregulation of the proteolytic system might result in uncontrolled proliferation, genomic instability and cancer. Cumulative clinical evidence shows alterations in the ubiquitylation of cell-cycle regulators in the aetiology of many human malignancies. A better understanding of the ubiquitylation machinery will provide new insights into the regulatory biology of cell-cycle transitions and the development of anti-cancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the ubiquitin-proteasome pathway.
Figure 2: The structural similarity of SCF and APC/C.
Figure 3: Cell-cycle regulation by the SCF complex and APC/C.
Figure 4: Functions of the SKP1–CUL1–F-box-protein (SCF) complex.
Figure 5: Regulation and function of the anaphase-promoting complex/cyclosome (APC/C).

Similar content being viewed by others

References

  1. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991). Shows that cyclins are degraded by the ubiquitin-proteasome pathway and defines the D-box degron.

    Article  CAS  PubMed  Google Scholar 

  3. Hershko, A. Ubiquitin: roles in protein modification and breakdown. Cell 34, 11–12 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Okamoto, Y. et al. UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res. 63, 4167–4173 (2003).

    CAS  PubMed  Google Scholar 

  5. Bloom, J. & Pagano, M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 13, 41–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995). The first paper describing ubiquitylation of p27.

    Article  CAS  PubMed  Google Scholar 

  7. Shirane, M. et al. Down-regulation of p27Kip1 by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem. 274, 13886–13893 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Nakayama, K. I. & Nakayama, K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Harper, J. W., Burton, J. L. & Solomon, M. J. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179–2206 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Castro, A., Bernis, C., Vigneron, S., Labbe, J. C. & Lorca, T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 24, 314–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Jin, J. et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aulia, S. & Tang, B. L. Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer's disease pathology. Biochem. Biophys. Res. Commun. 339, 1–6 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCFβTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003). References 13 and 14 show the interplay between the SCF complex and the APC/C through the degradation of EMI1, an inhibitor of APC/C, by SCFβ–TRCP.

    Article  CAS  PubMed  Google Scholar 

  15. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428, 190–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004). References 15 and 16 show the interplay between the SCF complex and APC/C through the degradation of SKP2 by APC/CCDH1.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, H., Kobayashi, R., Galaktionov, K. & Beach, D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82, 915–925. (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999). References 18–20 show that SKP2 targets p27 for degradation only when it is phosphorylated on Thr187.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Z. K., Gervais, J. L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bornstein, G. et al. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J. Biol. Chem. 278, 25752–25757 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kamura, T. et al. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc. Natl Acad. Sci. USA 100, 10231–10236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000). Describes Skp2-deficient mice, which show over-replication problems with a marked accumulation of p27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakayama, K. et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell 6, 661–672 (2004). Shows that p27 is one of the main substrates of SCFSKP2, as the SKP2−/− phenotype is rescued by p27 deficiency. It also shows that p27 inhibits CDK1 as well as CDK2.

    Article  CAS  PubMed  Google Scholar 

  26. Kossatz, U. et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 18, 2602–2607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Yokoi, S. et al. A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers. Am. J. Pathol. 161, 207–216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yokoi, S. et al. Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am. J. Pathol. 165, 175–180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dowen, S. E. et al. Amplification of chromosome 5p correlates with increased expression of Skp2 in HPV-immortalized keratinocytes. Oncogene 22, 2531–2540 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Shapira, M. et al. Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100, 1615–1621 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Shapira, M. et al. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer 103, 1336–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Latres, E. et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl Acad. Sci. USA 98, 2515–2520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shim, E. H. et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 63, 1583–1588 (2003).

    CAS  PubMed  Google Scholar 

  37. Imaki, H. et al. Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res. 63, 4607–4613 (2003).

    CAS  PubMed  Google Scholar 

  38. Hara, T. et al. Degradation of p27Kip1 at the G0-G1 transition mediated by a Skp2-independent ubiquitination pathway. J. Biol. Chem. 276, 48937–48943 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem. 277, 14355–14358 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Rodier, G. et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672–6682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miura, M., Hatakeyama, S., Hattori, K. & Nakayama, K. I. Structure and expression of the gene encoding mouse F-box protein, Fwd2. Genomics 62, 50–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nature Cell Biol. 6, 1229–1235 (2004). Identifies the second E3 ligase for p27 that functions during G1 phase in the cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  43. Kotoshiba, S., Kamura, T., Hara, T., Ishida, N. & Nakayama, K. I. Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J. Biol. Chem. 280, 17694–17700 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hara, T. et al. Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol. Cell. Biol. 25, 9292–9303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Signoretti, S. et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J. Clin. Invest. 110, 633–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hubbard, E. J., Wu, G., Kitajewski, J. & Greenwald, I. sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 11, 3182–3193 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J. Biol. Chem. 279, 9417–9423 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Ekholm-Reed, S. et al. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer. Cancer Res. 64, 795–800 (2004).

    Article  PubMed  Google Scholar 

  53. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  54. Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003). References 54 and 55 show that FBW7 targets MYC for degradation only when MB1 is phosphorylated, while references 56 and 57 show that SKP2 binds to, and activates, MYC.

    Article  CAS  PubMed  Google Scholar 

  58. Weng, A. P. & Aster, J. C. Multiple niches for Notch in cancer: context is everything. Curr. Opin. Genet. Dev. 14, 48–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol. 17, 6265–6273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Callahan, R. & Raafat, A. Notch signaling in mammary gland tumorigenesis. J. Mammary Gland Biol. Neoplasia 6, 23–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Hoemann, C. D., Beaulieu, N., Girard, L., Rebai, N. & Jolicoeur, P. Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice. Mol. Cell. Biol. 20, 3831–3842 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med. 8, 979–986 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Gallahan, D. & Callahan, R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14, 1883–1890 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hartl, M., Bader, A. G. & Bister, K. Molecular targets of the oncogenic transcription factor jun. Curr. Cancer Drug Targets 3, 41–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Tung, J. J. et al. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc. Natl Acad. Sci. USA 102, 4318–4323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmidt, A. et al. Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev. 19, 502–513 (2005). References 66 and 67 show that EMI2, an inhibitor of the APC/C, is essential for the CSF-arrest of eggs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ−TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jin, J. et al. SCFβ–TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17, 3062–3074 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kanemori, Y., Uto, K. & Sagata, N. β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc. Natl Acad. Sci. USA 102, 6279–6284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998). Shows that a mutation in a D. melanogaster homologue of β-TrCP (Slimb) induces accumulation of a D. melanogaster homologue of β-catenin (Armadillo).

    Article  CAS  PubMed  Google Scholar 

  73. Spevak, W., Keiper, B. D., Stratowa, C. & Castanon, M. J. Saccharomyces cerevisiae cdc15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with β-transducin repeats. Mol. Cell. Biol. 13, 4953–4966 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakayama, K. et al. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene. Proc. Natl Acad. Sci. USA 100, 8752–8757 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hattori, K., Hatakeyama, S., Shirane, M., Matsumoto, M. & Nakayama, K. I. Molecular dissection of the interactions among IκBα, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of IκBα. J. Biol. Chem. 274, 29641–29647 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Saitoh, T. & Katoh, M. Expression profiles of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric cancer. Int. J. Oncol. 18, 959–964 (2001).

    CAS  PubMed  Google Scholar 

  77. Gerstein, A. V. et al. APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34, 9–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Koch, A. et al. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin. Cancer Res. 11, 4295–4304 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Ougolkov, A. et al. Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-κB in colorectal cancer. J. Natl Cancer Inst. 96, 1161–1170 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Spiegelman, V. S. et al. Wnt/β-catenin signaling induces the expression and activity of βTrCP ubiquitin ligase receptor. Mol. Cell 5, 877–882 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Muerkoster, S. et al. Increased expression of the E3-ubiquitin ligase receptor subunit βTRCP1 relates to constitutive nuclear factor-κB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res. 65, 1316–1324 (2005).

    Article  PubMed  Google Scholar 

  82. Kudo, Y. et al. Role of F-box protein βTrcp1 in mammary gland development and tumorigenesis. Mol. Cell. Biol. 24, 8184–8194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Belaidouni, N. et al. Overexpression of human βTrCP1 deleted of its F box induces tumorigenesis in transgenic mice. Oncogene 24, 2271–2276 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Wojcik, E. J., Glover, D. M. & Hays, T. S. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr. Biol. 10, 1131–1134 (2000). Compares the two APC/C degron motifs, the D-box and the KEN-box.

    Article  CAS  PubMed  Google Scholar 

  85. Pfleger, C. M., Lee, E. & Kirschner, M. W. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev. 15, 2396–2407 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burton JL, Solomon MJ. D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev. 15, 2381–2395 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Yanagida, M. Cell cycle mechanisms of sister chromatid separation; roles of Cut1/separin and Cut2/securin. Genes Cells 5, 1–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Bharadwaj, R. & Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016–2027 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Dominguez, A. et al. hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17, 2187–2193 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jallepalli, P. V. et al. Securin is required for chromosomal stability in human cells. Cell 105, 445–457 (2001). Shows that human cells without a securin gene lose chromosomes at a high frequency.

    Article  CAS  PubMed  Google Scholar 

  95. Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. & Mayer, T. U. Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, J. & Maller, J. L. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr. Biol. 15, 1458–1468 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Wasch, R. & Engelbert, D. Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells. Oncogene 24, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Prinz, S., Hwang, E. S., Visintin, R. & Amon, A. The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8, 750–760 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Bardin, A. J. & Amon, A. Men and sin: what's the difference? Nature Rev. Mol. Cell Biol. 2, 815–826 (2001).

    Article  CAS  Google Scholar 

  103. McCollum, D. & Gould, K. L. Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends Cell Biol. 11, 89–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Simanis, V. The mitotic exit and septation initiation networks. J. Cell Sci. 116, 4261–4262 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. D'Amours, D. & Amon, A. At the interface between signaling and executing anaphase — Cdc14 and the FEAR network. Genes Dev. 18, 2581–2595 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, C. X., Fisk, B. C., Wadehra, M., Su, H. & Braun, J. Overexpression of murine fizzy-related (fzr) increases natural killer cell-mediated cell death and suppresses tumor growth. Blood 96, 259–263 (2000). The only published study that analyses mutations in subunits of APC/C in human cancers.

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Q. et al. Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene 22, 1486–1490 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Sarafan-Vasseur, N. et al. Overexpression of B-type cyclins alters chromosomal segregation. Oncogene 21, 2051–2057 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Melixetian, M. & Helin, K. Geminin: a major DNA replication safeguard in higher eukaryotes. Cell Cycle 3, 1002–1004 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nature Rev. Mol. Cell. Biol. 4, 842–854 (2003).

    Article  CAS  Google Scholar 

  113. Giet, R., Petretti, C. & Prigent, C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol. 15, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Sen, S. et al. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J. Natl Cancer Inst. 94, 1320–1329 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Li, D. et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin. Cancer Res. 9, 991–997 (2003).

    CAS  PubMed  Google Scholar 

  117. Ewart-Toland, A. et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nature Genet. 34, 403–412 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Gritsko, T. M. et al. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin. Cancer Res. 9, 1420–1426 (2003).

    CAS  PubMed  Google Scholar 

  119. Hamada, M. et al. Aurora2/BTAK/STK15 is involved in cell cycle checkpoint and cell survival of aggressive non-Hodgkin's lymphoma. Br. J. Haematol. 121, 439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Takai, N., Hamanaka, R., Yoshimatsu, J. & Miyakawa, I. Polo-like kinases (Plks) and cancer. Oncogene 24, 287–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Fry, A. M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21, 6184–6194 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Hayward, D. G. & Fry, A. M. Nek2 kinase in chromosome instability and cancer. Cancer Lett. 2 Aug 2005 [epub ahead of print].

    Google Scholar 

  124. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Ludwig, H., Khayat, D., Giaccone, G. & Facon, T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 104, 1794–1807 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Cuasck, J. C. Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat. Rev. 29, Suppl. 1 21–31 (2003).

    Article  CAS  Google Scholar 

  127. Kudo, Y. et al. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 61, 7044–7047 (2001).

    CAS  PubMed  Google Scholar 

  128. Shintani, S. et al. Skp2 and Jab1 expression are associated with inverse expression of p27KIP1 and poor prognosis in oral squamous cell carcinomas. Oncology 65, 355–362 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Ben-Izhak, O., Kablan, F., Laster, Z. & Nagler, R. M. Oropharyngeal cancer pathogenesis: ubiquitin proteolytic, apoptotic and epidermal growth factor related pathways act in concert — first report. Oral Oncol. 41, 851–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Dong, Y., Sui, L., Watanabe, Y., Sugimoto, K. & Tokuda, M. S-phase kinase-associated protein 2 expression in laryngeal squamous cell carcinomas and its prognostic implications. Oncol. Rep. 10, 321–325 (2003).

    CAS  PubMed  Google Scholar 

  131. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fukuchi, M. et al. Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res. 24, 777–783 (2004).

    CAS  PubMed  Google Scholar 

  133. Masuda, T. A. et al. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 62, 3819–3825 (2002).

    CAS  PubMed  Google Scholar 

  134. Honjo, S. et al. COX-2 correlates with F-box protein, Skp2 expression and prognosis in human gastric carcinoma. Int. J. Oncol. 26, 353–360 (2005).

    CAS  PubMed  Google Scholar 

  135. Hershko, D. et al. Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer 91, 1745–1751 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Li, J. Q. et al. Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int. J. Oncol. 25, 87–95 (2004).

    PubMed  Google Scholar 

  137. Sanada, T. et al. Skp2 overexpression is a p27Kip1-independent predictor of poor prognosis in patients with biliary tract cancers. Cancer Sci. 95, 969–976 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Zhu, C. Q. et al. Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin. Cancer Res. 10, 1984–1991 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Goto, A. et al. Immunohistochemical study of Skp2 and Jab1, two key molecules in the degradation of P27, in lung adenocarcinoma. Pathol. Int. 54, 675–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Osoegawa, A. et al. Regulation of p27 by S-phase kinase-associated protein 2 is associated with aggressiveness in non-small-cell lung cancer. J. Clin. Oncol. 22, 4165–4173 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Takanami, I. The prognostic value of overexpression of Skp2 mRNA in non-small cell lung cancer. Oncol. Rep. 13, 727–731 (2005).

    CAS  PubMed  Google Scholar 

  142. Li, Q., Murphy, M., Ross, J., Sheehan, C. & Carlson, J. A. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J. Cutan. Pathol. 31, 633–642 (2004).

    Article  PubMed  Google Scholar 

  143. Woenckhaus, C. et al. Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol. Histopathol. 20, 501–508 (2005).

    CAS  PubMed  Google Scholar 

  144. Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C. & Piva, R. Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci. Lett. 328, 125–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Saigusa, K. et al. Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas. Cancer Sci. 96, 676–683 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Langner, C., von Wasielewski, R., Ratschek, M., Rehak, P. & Zigeuner, R. Biological significance of p27 and Skp2 expression in renal cell carcinoma. A systematic analysis of primary and metastatic tumour tissues using a tissue microarray technique. Virchows Arch. 445, 631–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Yang, G. et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin. Cancer Res. 8, 3419–3426 (2002).

    CAS  PubMed  Google Scholar 

  148. Ben-Izhak, O. et al. Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J. Urol. 170, 241–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Drobnjak, M. et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin. Cancer Res. 9, 2613–2619 (2003).

    CAS  PubMed  Google Scholar 

  150. Langner, C., von Wasielewski, R., Ratschek, M., Rehak, P. & Zigeuner, R. Expression of p27 and its ubiquitin ligase subunit Skp2 in upper urinary tract transitional cell carcinoma. Urology 64, 611–616 (2004).

    Article  PubMed  Google Scholar 

  151. Dowen, S. E., Scott, A., Mukherjee, G. & Stanley, M. A. Overexpression of Skp2 in carcinoma of the cervix does not correlate inversely with p27 expression. Int. J. Cancer 105, 326–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Lahav-Baratz, S. et al. Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol. Hum. Reprod. 10, 567–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Shigemasa, K., Gu, L., O'Brien, T. J. & Ohama, K. Skp2 overexpression is a prognostic factor in patients with ovarian adenocarcinoma. Clin. Cancer Res. 9, 1756–1763 (2003).

    CAS  PubMed  Google Scholar 

  154. Penin, R. M. et al. Over-expression of p45(SKP2) in Kaposi's sarcoma correlates with higher tumor stage and extracutaneous involvement but is not directly related to p27KIP1 down-regulation. Mod. Pathol. 15, 1227–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Oliveira, A. M., Okuno, S. H., Nascimento, A. G. & Lloyd, R. V. Skp2 protein expression in soft tissue sarcomas. J. Clin. Oncol. 21, 722–727 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Chiarle, R. et al. S-phase kinase-associated protein 2 expression in non-Hodgkin's lymphoma inversely correlates with p27 expression and defines cells in S phase. Am. J. Pathol. 160, 1457–1466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Seki, R. et al. Prognostic significance of the F-box protein Skp2 expression in diffuse large B-cell lymphoma. Am. J. Hematol. 73, 230–235 (2003).

    Article  PubMed  Google Scholar 

  158. Min, Y. H. et al. Elevated S-phase kinase-associated protein 2 protein expression in acute myelogenous leukemia: its association with constitutive phosphorylation of phosphatase and tensin homologue protein and poor prognosis. Clin. Cancer Res. 10, 5123–5130 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Lim, M. S. et al. Expression of Skp2, a p27Kip1 ubiquitin ligase, in malignant lymphoma: correlation with p27Kip1 and proliferation index. Blood 100, 2950–2956 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Kwak, E. L. et al. Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecol. Oncol. 98, 124–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Spruck, C. H. et al. hCDC4 gene mutations in endometrial cancer. Cancer Res. 62, 4535–4539 (2002).

    CAS  PubMed  Google Scholar 

  163. Cassia, R. et al. Cyclin E gene (CCNE) amplification and hCDC4 mutations in endometrial carcinoma. J. Pathol. 201, 589–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Li, D. et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin. Cancer Res. 9, 991–997 (2003).

    CAS  PubMed  Google Scholar 

  165. Singhal, S. et al. Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling. Cancer Biol. Ther. 2, 291–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Kim, J. M. et al. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin. Cancer Res. 11, 473–482 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all members of our laboratories for their comments. We are also thankful to A. Ohta and M. Kimura for help in preparing this manuscript. This research was partly supported by a grant from CREST, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi I. Nakayama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary table S1, supplementary references and figures S2-S3 (PDF 405 kb)

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colorectal carcinoma

gastric cancer

lung cancer

lymphoma

myeloma

ovarian cancer

prostate cancer

FURTHER INFORMATION

Keiichi I. Nakayama's homepage

Glossary

Cyclin-dependent kinase

A protein kinase that controls cell-cycle progression in all eukaryotes and requires physical association with cyclins to achieve full enzymatic activity.

Cyclin

The positive regulatory subunits of cyclin-dependent kinases, showing oscillating expression in the cell cycle.

Ubiquitin

A 76-amino-acid polypeptide that is conjugated through an isopeptide linkage to other proteins. Such conjugates are most commonly targeted for degradation by the proteasome.

Proteasome

A large 2.5-MDa multisubunit protein complex that binds to and subsequently degrades polyubiquitylated proteins in an ATP-dependent manner.

Ubiquitin-conjugating enzyme (E2)

An enzyme that accepts ubiquitin from a ubiquitin-activating enzyme (E1) and, together with a ubiquitin ligase (E3), transfers it to a substrate protein.

Ubiquitin ligase (E3)

A protein or protein complex that facilitates the transfer of ubiquitin from a ubiquitin-conjugating enzyme (E2) to a substrate. E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating the ubiquitylation of the selected substrate.

Cullins

A family of proteins that are characterized by the presence of a distinct globular C-terminal domain (cullin homology domain) and a series of N-terminal repeats of a five helix bundle (cullin repeats).

F-box protein

A variable component of SCF E3 ligase that binds to SKP1 through the Fbox domain. FBPs recognize specific substrates and, with the help of other subunits of the E3 ubiquitin ligase, deliver them to the E2 ubiquitin-conjugating enzyme.

RING-finger proteins

A family of proteins structurally defined by a particular folded protein domain that binds Zn2+ through a four-point arrangement of cysteine and histidine amino acids. In most cases, a RING-finger protein interacts with an E2 and serves as an E3.

WD40 repeat

A protein-interaction domain consisting of 40 amino-acid repeats that form a propeller-like structure, in which each repeat contributes a blade.

Leucine-rich repeat

A protein-sequence motif that contains regular occurrences of the amino acid leucine, which are present as tandem arrays in certain proteins. The back-to-back set of motifs was found to correspond to a small sub-domain structure in the protein that stacks next to adjacent repeats to form a parallel, β-sheet, arc-like structure.

Degron

A portion of a protein that is necessary and sufficient to bring about its degradation by the ubiquitin–proteasome system.

Spindle

A highly dynamic, bipolar array of microtubules that forms during mitosis or meiosis and serves to move the duplicated chromosomes apart.

Kinetochore

The complicated protein assembly that links the specialized areas of condensed chromosomes, known as centromeres, to the microtubule-based mitotic spindle.

Aneuploidy

The ploidy of a cell refers to the number of sets of chromosomes that it contains. Aneuploid karyotypes are those of which chromosome complements are not a simple multiple of the haploid set.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, K., Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6, 369–381 (2006). https://doi.org/10.1038/nrc1881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing