Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The mouse cornea micropocket angiogenesis assay

Abstract

The mouse corneal micropocket angiogenesis assay uses the avascular cornea as a canvas to study angiogenesis in vivo. Through the use of standardized slow-release pellets, a predictable angiogenic response is generated over the course of 5 d and then quantified. Uniform slow-release pellets are prepared by mixing purified angiogenic growth factors such as basic fibroblast growth factor or vascular endothelial growth factor with sucralfate (a stabilizer) and Hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate)) to allow slow release). This mixture is applied to a mesh that controls unit size and then allowed to harden. A micropocket is surgically created in the mouse cornea and a pellet implanted. Five days later, the area of the cornea overgrown by the angiogenic response is measured using a slit lamp. A skilled investigator can implant and grade 40 eyes in about 2.5 h. The results of the assay are used to assess the ability of potential therapeutic molecules or genetic differences to modulate angiogenesis in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of area of corneal neovascularization.
Figure 2: Creation of a corneal micropocket and pellet implantation.

Similar content being viewed by others

References

  1. Gospodarowicz, D., Moran, J., Braun, D. & Birdwell, C. Clonal growth of bovine vascular endothelial cells: fibroblast growth factor as a survival agent. Proc. Natl. Acad. Sci. USA 73, 4120–4124 (1976).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Glaser, B.M., D'Amore, P.A., Seppa, H., Seppa, S. & Schiffmann, E. Adult tissues contain chemoattractants for vascular endothelial cells. Nature 288, 483–484 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Kubota, Y., Kleinman, H.K., Martin, G.R. & Lawley, T.J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Montesano, R. & Orci, L. Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42, 469–477 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Korff, T. & Augustin, H.G. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341–1352 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nicosia, R.F., Tchao, R. & Leighton, J. Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18, 538–549 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Sandison, J.C. A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear. Anat. Rec. 28, 281–287 (1924).

    Article  Google Scholar 

  8. Jain, R.K., Schlenger, K., Hockel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nat. Med. 3, 1203–1208 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Gimbrone, M.A., Leapman, S.B., Cotran, R.S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Maiorana, A. & Gullino, P.M. Acquisition of angiogenic capacity and neoplastic transformation in the rat mammary gland. Cancer Res. 38, 4409–4414 (1978).

    CAS  PubMed  Google Scholar 

  11. Gimbrone, M.A., Cotran, R.S., Leapman, S.B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413–427 (1974).

    Article  PubMed  Google Scholar 

  12. Gimbrone, M.A., Leapman, S.B., Cotran, R.S. & Folkman, J. Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J. Natl. Cancer Inst. 50, 219–228 (1973).

    Article  PubMed  Google Scholar 

  13. Muthukkaruppan, V. & Auerbach, R. Angiogenesis in the mouse cornea. Science 205, 1416–1418 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. D'Amato, R.J., Loughnan, M.S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 91, 4082–4085 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li, W.W., Grayson, G., Folkman, J. & D'Amore, P.A. Sustained-release endotoxin. A model for inducing corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 32, 2906–2911 (1991).

    CAS  PubMed  Google Scholar 

  16. Phillips, G.D. et al. Vascular endothelial growth factor (rhVEGF165) stimulates direct angiogenesis in the rabbit cornea. In Vivo 8, 961–965 (1994).

    CAS  PubMed  Google Scholar 

  17. BenEzra, D., Hemo, I. & Maftzir, G. In vivo angiogenic activity of interleukins. Arch. Ophthalmol. 108, 573–576 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Knighton, D.R., Phillips, G.D. & Fiegel, V.D. Wound healing angiogenesis: indirect stimulation by basic fibroblast growth factor. J. Trauma 30, S134–S144 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Kenyon, B.M. et al. A model of angiogenesis in the mouse cornea. Invest. Ophthalmol. Vis. Sci. 37, 1625–1632 (1996).

    CAS  PubMed  Google Scholar 

  20. Chang, L.K. et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc. Natl. Acad. Sci. USA 101, 11658–11663 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hoang, M.V., Whelan, M.C. & Senger, D.R. Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc. Natl. Acad. Sci. USA 101, 1874–1879 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rogers, M.S., Rohan, R.M., Birsner, A.E. & D'Amato, R.J. Genetic loci that control vascular endothelial growth factor-induced angiogenesis. FASEB J. 17, 2112–2114 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Rogers, M.S. & D'Amato, R.J. The effect of genetic diversity on angiogenesis. Exp. Cell Res. 312, 561–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Rogers, M.S., Rohan, R.M., Birsner, A.E. & D'Amato, R.J. Genetic loci that control the angiogenic response to basic fibroblast growth factor. FASEB J. 18, 1050–1059 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Rohan, R.M., Fernandez, A., Udagawa, T., Yuan, J. & D'Amato, R.J. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14, 871–876 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J D'Amato.

Supplementary information

Supplementary Video 1

Video showing the formation of a corneal micropocket and pellet implantation (MOV 5822 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, M., Birsner, A. & D'Amato, R. The mouse cornea micropocket angiogenesis assay. Nat Protoc 2, 2545–2550 (2007). https://doi.org/10.1038/nprot.2007.368

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.368

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing