Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice

Abstract

Blockade of cholinergic neurotransmission by muscarinic receptor antagonists produces profound deficits in attention and memory. However, the antagonists used in previous studies bind to more than one of the five muscarinic receptor subtypes. Here we examined memory in mice with a null mutation of the gene coding the M1 receptor, the most densely distributed muscarinic receptor in the hippocampus and forebrain. In contrast with previous studies using nonselective pharmacological antagonists, the M1 receptor deletion produced a selective phenotype that included both enhancements and deficits in memory. Long-term potentiation (LTP) in response to theta burst stimulation in the hippocampus was also reduced in mutant mice. M1 null mutant mice showed normal or enhanced memory for tasks that involved matching-to-sample problems, but they were severely impaired in non-matching-to-sample working memory as well as consolidation. Our results suggest that the M1 receptor is specifically involved in memory processes for which the cortex and hippocampus interact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pavlovian contextual and cued fear conditioning.
Figure 2: Win-shift spatial working memory, social discrimination and Morris water maze learning.
Figure 3: Generalized activity and motor performance.
Figure 4: Hippocampal CA1 long-term potentiation (LTP) in vitro.

Similar content being viewed by others

References

  1. Caulfield, M.P. & Birdsall, N.J. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 50, 279–290 (1998).

    CAS  PubMed  Google Scholar 

  2. Fornari, R.V., Moreira, K.M. & Oliveira, M.G. Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory. Learn. Mem. 7, 287–292 (2000).

    Article  CAS  Google Scholar 

  3. Wallis, R.M. & Napier, C.M. Muscarinic antagonists in development for disorders of smooth muscle function. Life Sci. 64, 395–401 (1999).

    Article  CAS  Google Scholar 

  4. Levey, A.I., Kitt, C.A., Simonds, W.F., Price, D.L. & Brann, M.R. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11, 3218–3226 (1991).

    Article  CAS  Google Scholar 

  5. Wei, J., Walton, E.A., Milici, A. & Buccafusco, J.J. m1-m5 muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J. Neurochem. 63, 815–821 (1994).

    Article  CAS  Google Scholar 

  6. Marino, M.J., Rouse, S.T., Levey, A.I., Potter, L.T. & Conn, P.J. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 95, 11465–11470 (1998).

    Article  CAS  Google Scholar 

  7. Hamilton, S.E. & Nathanson, N.M. The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. J. Biol. Chem. 276, 15850–15853 (2001).

    Article  CAS  Google Scholar 

  8. Hamilton, S.E. et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. USA 94, 13311–13316 (1997).

    Article  CAS  Google Scholar 

  9. Anagnostaras, S.G., Maren, S., Sage, J.R., Goodrich, S. & Fanselow, M.S. Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology 21, 731–744 (1999).

    Article  CAS  Google Scholar 

  10. Anagnostaras, S.G., Maren, S. & Fanselow, M.S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).

    Article  CAS  Google Scholar 

  11. Levy, A., Kluge, P.B. & Elsmore, T.F. Radial arm maze performance of mice: acquisition and atropine effects. Behav. Neural Biol. 39, 229–240 (1983).

    Article  CAS  Google Scholar 

  12. Olton, D., Becker, J. & Handelmann, G. Hippocampus, space and memory. Behav. Brain Sci. 2, 313–365 (1979).

    Article  Google Scholar 

  13. Hagen, J.J., Tweedie, F. & Morris, R.G.M. Lack of task specificy and absence of post-training effects of atropine on learning. Behav. Neurosci. 100, 483–493 (1986).

    Article  Google Scholar 

  14. Morris, R.G.M., Garrud, P., Rawlins, J.N.P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  15. Winslow, J.T. & Camacho, F. Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology (Berl.) 121, 164–172 (1995).

    Article  CAS  Google Scholar 

  16. Kogan, J.H., Frankland, P.W. & Silva, A.J. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000).

    Article  CAS  Google Scholar 

  17. Huerta, P.T. & Lisman, J.E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15, 1053–1063 (1995).

    Article  CAS  Google Scholar 

  18. Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    Article  CAS  Google Scholar 

  19. Phillips, R.G. & LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  Google Scholar 

  20. Rudy, J.W. Scopolamine administered before and after training impairs both contextual and auditory-cue fear conditioning. Neurobiol. Learn. Mem. 65, 73–81 (1996).

    Article  CAS  Google Scholar 

  21. Gale, G.D., Anagnostaras, S.G. & Fanselow, M.S. Cholinergic modulation of Pavlovian fear conditioning: effects of intra-hippocampal scopolamine infusion. Hippocampus 11, 371–376 (2001).

    Article  CAS  Google Scholar 

  22. Wallenstein, G.V. & Vago, D.R. Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol. Learn. Mem. 75, 245–252 (2001).

    Article  CAS  Google Scholar 

  23. Anagnostaras, S.G., Josselyn, S.A., Frankland, P.W. & Silva, A.J. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn. Mem. 7, 58–72 (2000).

    Article  CAS  Google Scholar 

  24. Maren, S., Anagnostaras, S.G. & Fanselow, M.S. The startled seahorse: is the hippocampus necessary for contextual fear conditioning? Trends Cogn. Sci. 2, 39–42 (1998).

    Article  CAS  Google Scholar 

  25. Frankland, P.W., O'Brien, C., Ohno, M., Kirkwood, A. & Silva, A.J. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411, 309–313 (2001).

    Article  CAS  Google Scholar 

  26. Anagnostaras, S.G., Gale, G.D. & Fanselow, M.S. Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11, 8–17 (2001).

    Article  CAS  Google Scholar 

  27. Phillips, R.G. & LeDoux, J.E. Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn. Mem. 1, 34–44 (1994).

    CAS  PubMed  Google Scholar 

  28. Frankland, P.W., Cestari, V., Filipkowski, R.K., McDonald, R.J. & Silva, A.J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci. 112, 863–874 (1998).

    Article  CAS  Google Scholar 

  29. Maren, S., Aharonov, G. & Fanselow, M.S. Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res. 88, 261–274 (1997).

    Article  CAS  Google Scholar 

  30. Bontempi, B., Laurent-Demir, C., Destrade, C. & Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671–675 (1999).

    Article  CAS  Google Scholar 

  31. Cain, D.P. Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning. Neurosci. Biobehav. Rev. 22, 181–193 (1998).

    Article  CAS  Google Scholar 

  32. Gerber, D.J. et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl. Acad. Sci. USA 98, 15312–15317 (2001).

    Article  CAS  Google Scholar 

  33. Miyakawa, T., Yamada, M., Duttaroy, A. & Wess, J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21, 5239–5250 (2001).

    Article  CAS  Google Scholar 

  34. Squire, L.R. Memory and the hippocampus: a synthesis from findings with rat, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  Google Scholar 

  35. Silva, A.J., Paylor, R., Wehner, J.M. & Tonegawa, S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  CAS  Google Scholar 

  36. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    Article  CAS  Google Scholar 

  37. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  Google Scholar 

  38. Hamilton, S.E. et al. Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sci. 68, 2489–2493 (2001).

    Article  CAS  Google Scholar 

  39. Eichenbaum, H., Otto, T. & Cohen, N. Two functional components of the hippocampal memory system. Behav. Brain Sci. 17, 449–518 (1994).

    Article  Google Scholar 

  40. Olton, D.S. Discrimination reversal performance after hippocampal lesions: an enduring failure of reinforcement and non-reinforcement to direct behavior. Physiol. Behav. 9, 353–356 (1972).

    Article  CAS  Google Scholar 

  41. Konorski, J. Integrative Activity of the Brain (Univ. of Chicago Press, Chicago, Illinois, 1967).

  42. Fransen, E., Alonso, A.A. & Hasselmo, M.E. Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J. Neurosci. 22, 1081–1097 (2002).

    Article  CAS  Google Scholar 

  43. Dias, R. & Aggleton, J.P. Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur. J. Neurosci. 12, 4457–4466 (2000).

    Article  CAS  Google Scholar 

  44. D'Esposito, M. & Postle, B.R. The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37, 1303–1315 (1999).

    Article  CAS  Google Scholar 

  45. Hasselmo, M. Neuromodulation: acetylcholine and memory modulation. Trends Cogn. Sci. 3, 351–359 (1999).

    Article  CAS  Google Scholar 

  46. Buzsaki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).

    Article  CAS  Google Scholar 

  47. Alreja, M. et al. Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. J. Neurosci. 20, 8103–8110 (2000).

    Article  CAS  Google Scholar 

  48. Shiozaki, K., Iseki, E., Hino, H. & Kosaka, K. Distribution of m1 muscarinic acetylcholine receptors in the hippocampus of patients with Alzheimer's disease and dementia with Lewy bodies-an immunohistochemical study. J. Neurol. Sci. 193, 23–28 (2001).

    Article  CAS  Google Scholar 

  49. Levey, A.I., Edmunds, S.M., Koliatsos, V., Wiley, R.G. & Heilman, C.J. Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J. Neurosci. 15, 4077–4092 (1995).

    Article  CAS  Google Scholar 

  50. Bussiere, T. et al. Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer's disease. Neuroscience 112, 75–91 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by National Institutes of Health grants to S.A. (F32 NS10932), G.M. (F32 AG5858), N.N. (R01 NS26920) and A.S. (R01 AG17499). We thank R. Costa, A. Matynia, J. Sage and M. Sanders for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcino J. Silva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anagnostaras, S., Murphy, G., Hamilton, S. et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6, 51–58 (2003). https://doi.org/10.1038/nn992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing