Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron–Purkinje cell synapses

Abstract

Synaptic inhibition is a vital component in the control of cell excitability within the brain. Here we report a newly identified form of inhibitory synaptic plasticity, termed depolarization-induced potentiation of inhibition, in rodents. This mechanism strongly potentiated synaptic transmission from interneurons to Purkinje cells after the termination of depolarization-induced suppression of inhibition. It was triggered by an elevation of Ca2+ in Purkinje cells and the subsequent retrograde activation of presynaptic NMDA receptors. These glutamate receptors promoted the spontaneous release of Ca2+ from presynaptic ryanodine-sensitive Ca2+ stores. Thus, NMDA receptor–mediated facilitation of transmission at this synapse provides a regulatory mechanism that can dynamically alter the synaptic efficacy at inhibitory synapses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postsynaptic depolarization induces DSI, rebound potentiation and DPI in P6–8 cerebellar Purkinje cells.
Figure 2: DPI in P11–14 cerebellar Purkinje cells.
Figure 3: Physiological climbing fiber (CF) stimulation induces DPI in P11–14 Purkinje cells.
Figure 4: Calcium-dependent release of a retrograde messenger and the presynaptic origin of DPI.
Figure 5: Presynaptic NMDA receptors mediate DPI in cerebellar Purkinje cells.
Figure 6: Brief activation of presynaptic NMDA receptors enhances IN-PC inhibitory synaptic transmission.
Figure 7: Presynaptic ryanodine-sensitive Ca2+ stores are required for DPI.

Similar content being viewed by others

References

  1. Llano, I., Leresche, N. & Marty, A. Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6, 565–574 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Pitler, T.A. & Alger, B.E. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J. Neurosci. 12, 4122–4132 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Ohno-Shosaku, T., Maejima, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).

    Article  CAS  Google Scholar 

  4. Kreitzer, A.C. & Regehr, W.G. Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J. Neurosci. 21, RC174–RC1745 (2001).

    Article  CAS  Google Scholar 

  5. Kreitzer, A.C. & Regehr, W.G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001).

    Article  CAS  Google Scholar 

  6. Takahashi, K.A. & Linden, D.J. Cannabinoid receptor modulation of synapses received by cerebellar Purkinje cells. J. Neurophysiol. 83, 1167–1180 (2000).

    Article  CAS  Google Scholar 

  7. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  Google Scholar 

  8. Zilberter, Y., Kaiser, K.M. & Sakmann, B. Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 24, 979–988 (1999).

    Article  CAS  Google Scholar 

  9. Pittman, Q.J., Hirasawa, M., Mouginot, D. & Kombian, S.B. Neurohypophysial peptides as retrograde transmitters in the supraoptic nucleus of the rat. Exp. Physiol. 85 (Spec No.), 139S–143S (2000).

    Article  CAS  Google Scholar 

  10. Zilberter, Y. Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J. Physiol. (Lond.) 528, 489–496 (2000).

    Article  CAS  Google Scholar 

  11. Levenes, C., Daniel, H. & Crepel, F. Retrograde modulation of transmitter release by postsynaptic subtype 1 metabotropic glutamate receptors in the rat cerebellum. J. Physiol. (Lond.) 537, 125–140 (2001).

    Article  CAS  Google Scholar 

  12. Yung, W.H. et al. Secretin facilitates GABA transmission in the cerebellum. J. Neurosci. 21, 7063–7068 (2001).

    Article  CAS  Google Scholar 

  13. Petralia, R.S., Wang, Y.X. & Wenthold, R.J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J. Neurosci. 14, 6102–6120 (1994).

    Article  CAS  Google Scholar 

  14. DeBiasi, S., Minelli, A., Melone, M. & Conti, F. Presynaptic NMDA receptors in the neocortex are both auto- and heteroreceptors. Neuroreport 7, 2773–2776 (1996).

    Article  CAS  Google Scholar 

  15. Casado, M., Isope, P. & Ascher, P. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33, 123–130 (2002).

    Article  CAS  Google Scholar 

  16. Glitsch, M. & Marty, A. Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons. J. Neurosci. 19, 511–519 (1999).

    Article  CAS  Google Scholar 

  17. Ito, M. The Cerebellum and Neural Control (Raven Press, New York, 1984).

    Google Scholar 

  18. Armstrong, D.M. & Rawson, J.A. Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J. Physiol. (Lond.) 289, 425–448 (1979).

    Article  CAS  Google Scholar 

  19. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992).

    Article  CAS  Google Scholar 

  20. Konnerth, A., Dreessen, J. & Augustine, G.J. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 89, 7051–7055 (1992).

    Article  CAS  Google Scholar 

  21. Miyakawa, H., Lev-Ram, V., Lasser-Ross, N. & Ross, W.N. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J. Neurophysiol. 68, 1178–1189 (1992).

    Article  CAS  Google Scholar 

  22. Hashimoto, T., Ishii, T. & Ohmori, H. Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat. J. Physiol. (Lond.) 497, 611–627 (1996).

    Article  CAS  Google Scholar 

  23. Brenowitz, S.D. & Regehr, W.G. Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells. J. Neurosci. 23, 6373–6384 (2003).

    Article  CAS  Google Scholar 

  24. Brown, S.P., Brenowitz, S.D. & Regehr, W.G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neurosci. 6, 1048–1057 (2003).

    Article  CAS  Google Scholar 

  25. Sotelo, C. & Wassef, M. Cerebellar development: afferent organization and Purkinje cell heterogeneity. Phil. Trans. R. Soc. Lond. B Biol. Sci. 331, 307–313 (1991).

    Article  CAS  Google Scholar 

  26. Strata, P., Tempia, F., Zagrebelsky, M. & Rossi, F. Reciprocal trophic interactions between climbing fibres and Purkinje cells in the rat cerebellum. Prog. Brain Res. 114, 263–282 (1997).

    Article  CAS  Google Scholar 

  27. Knopfel, T., Vranesic, I., Staub, C. & Gahwiler, B.H. Climbing fibre responses in olivo-cerebellar slice cultures. II. Dynamics of cytosolic calcium in Purkinje cells. Eur. J. Neurosci. 3, 343–348 (1991).

    Article  Google Scholar 

  28. Hashimoto, K. & Kano, M. Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. J. Physiol. (Lond.) 506, 391–405 (1998).

    Article  CAS  Google Scholar 

  29. Silver, R.A., Momiyama, A. & Cull-Candy, S.G. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J. Physiol. (Lond.) 510, 881–902 (1998).

    Article  CAS  Google Scholar 

  30. Pouzat, C. & Hestrin, S. Developmental regulation of basket/stellate cell–Purkinje cell synapses in the cerebellum. J. Neurosci. 17, 9104–9112 (1997).

    Article  CAS  Google Scholar 

  31. Yoshida, T. et al. The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J. Neurosci. 22, 1690–1697 (2002).

    Article  CAS  Google Scholar 

  32. Diana, M.A., Levenes, C., Mackie, K. & Marty, A. Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J. Neurosci. 22, 200–208 (2002).

    Article  CAS  Google Scholar 

  33. Glitsch, M., Llano, I. & Marty, A. Glutamate as a candidate retrograde messenger at interneurone-Purkinje cell synapses of rat cerebellum. J. Physiol. (Lond.) 497, 531–537 (1996).

    Article  CAS  Google Scholar 

  34. Rosenmund, C., Legendre, P. & Westbrook, G.L. Expression of NMDA channels on cerebellar Purkinje cells acutely dissociated from newborn rats. J. Neurophysiol. 68, 1901–1905 (1992).

    Article  CAS  Google Scholar 

  35. Paquet, M. & Smith, Y. Presynaptic NMDA receptor subunit immunoreactivity in GABAergic terminals in rat brain. J. Comp. Neurol. 423, 330–347 (2000).

    Article  CAS  Google Scholar 

  36. Stephens, G.J., Morris, N.P., Fyffe, R.E. & Robertson, B. The Cav2.1/αA (P/Q-type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur. J. Neurosci. 13, 1902–1912 (2001).

    Article  CAS  Google Scholar 

  37. Mayer, M.L., Vyklicky, L., Jr. & Westbrook, G.L. Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J. Physiol. (Lond.) 415, 329–350 (1989).

    Article  CAS  Google Scholar 

  38. Llano, I. et al. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nature Neurosci. 3, 1256–1265 (2000).

    Article  CAS  Google Scholar 

  39. Emptage, N.J., Reid, C.A. & Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29, 197–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Zucker, R.S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Zimanyi, I., Buck, E., Abramson, J.J., Mack, M.M. & Pessah, I.N. Ryanodine induces persistent inactivation of the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Mol. Pharmacol. 42, 1049–1057 (1992).

    CAS  Google Scholar 

  42. Kano, M., Kano, M., Fukunaga, K. & Konnerth, A. Ca2+-induced rebound potentiation of γ-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc. Natl. Acad. Sci. USA 93, 13351–13356 (1996).

    Article  CAS  Google Scholar 

  43. Fierro, L. & Llano, I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J. Physiol. (Lond.) 496, 617–625 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Kurobe, N. et al. Developmental and age-dependent changes of 28-kDa calbindin-D in the central nervous tissue determined with a sensitive immunoassay method. J. Neurochem. 58, 128–134 (1992).

    Article  CAS  Google Scholar 

  45. Yamada, K. et al. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J. Comp. Neurol. 418, 106–120 (2000).

    Article  CAS  Google Scholar 

  46. Yamada, K. & Watanabe, M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat. Sci. Int. 77, 94–108 (2002).

    Article  Google Scholar 

  47. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. & Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

    Article  CAS  Google Scholar 

  48. Galante, M. & Marty, A. Presynaptic ryanodine-sensitive calcium stores contribute to evoked neurotransmitter release at the basket cell-Purkinje cell synapse. J. Neurosci. 23, 11229–11234 (2003).

    Article  CAS  Google Scholar 

  49. Kim, J. & Alger, B.E. Random response fluctuations lead to spurious paired-pulse facilitation. J. Neurosci. 21, 9608–9618 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Gibb, B. Clark, A. Hosie and P. Thomas for helpful discussions on the manuscript. This work was supported by the Biotechnology and Biological Sciences Research Council, Medical Research Council and GlaxoSmithKline. We thank S. Moss (University College London) for the NR1 antibody, P. Whiting (Merck, Sharp and Dohme) for the NR2 antibodies, D. Baker (Institute of Neurology, University College London) for SR141716A and T. Carter (National Institute for Medical Research) for the nitrophenyl-EGTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G Smart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic diagram of the mechanism underlying DPI. The events that follow Purkinje cell depolarization leading to a rapid rise in postsynaptic cytosolic Ca2+ and the retrograde release of glutamate are depicted. The released glutamate activates presynaptic NMDA receptors present on basket/stellate cell axon terminals inducing a rise in bouton Ca2+ levels via NMDA receptors. This rise in Ca2+ facilitates CICR from presynaptic ryanodine-sensitive Ca2+ stores leading to a sustained increase in inhibitory synaptic transmission at the IN-PC synapse, termed DPI. (JPG 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duguid, I., Smart, T. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron–Purkinje cell synapses. Nat Neurosci 7, 525–533 (2004). https://doi.org/10.1038/nn1227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing