Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system

A Corrigendum to this article was published on 01 March 2006

Abstract

Experience-dependent remodeling of the postsynaptic density (PSD) is critical for synapse formation and plasticity in the mammalian brain. Here, in cultured rat hippocampal neurons, I found long-lasting, global changes in the molecular composition of the PSD dictated by synaptic activity. These changes were bidirectional, reversible, modular, and involved multiple classes of PSD proteins. Moreover, activity-dependent remodeling was accompanied by altered protein turnover, occurred with corresponding increases or decreases in ubiquitin conjugation of synaptic proteins and required proteasome-mediated degradation. These modifications, in turn, reciprocally altered synaptic signaling to the downstream effectors CREB (cyclic AMP response element binding protein) and ERK-MAPK (extracellular signal regulated kinase–MAP kinase). These results indicate that activity regulates postsynaptic composition and signaling through the ubiquitin-proteasome system, providing a mechanistic link between synaptic activity, protein turnover and the functional reorganization of synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic activity bidirectionally and reversibly regulates the composition of the PSD.
Figure 2: Postsynaptic protein ensembles coregulated by activity.
Figure 3: Activity-dependent accumulation or reduction of PSD proteins at synaptic sites.
Figure 4: Activity level controls protein half-life in synaptic fractions.
Figure 5: Synaptic activity increases ubiquitin conjugation of PSD proteins.
Figure 6: Activity regulates ubiquitination of the postsynaptic scaffolds Shank, GKAP and AKAP79/150.
Figure 7: Activity-dependent remodeling of the PSD results from ubiquitin-proteasome–mediated degradation.
Figure 8: Activity level and proteasome-mediated degradation regulate synaptic signaling.

Similar content being viewed by others

References

  1. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  Google Scholar 

  2. Luscher, C., Nicoll, R.A., Malenka, R.C. & Muller, D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545–550 (2000).

    Article  CAS  Google Scholar 

  3. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  4. Sheng, M. & Kim, M.J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  Google Scholar 

  5. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  Google Scholar 

  6. Geinisman, Y., deToledo-Morrell, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77–88 (1991).

    Article  CAS  Google Scholar 

  7. Toni, N., Buchs, P.A., Nikonenko, I., Bron, C.R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999).

    Article  CAS  Google Scholar 

  8. Okabe, S., Kim, H.D., Miwa, A., Kuriu, T. & Okado, H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat. Neurosci. 2, 804–811 (1999).

    Article  CAS  Google Scholar 

  9. Marrs, G.S., Green, S.H. & Dailey, M.E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci. 4, 1006–1013 (2001).

    Article  CAS  Google Scholar 

  10. Meyer, T. & Shen, K. In and out of the postsynaptic region: signaling proteins on the move. Trends Cell Biol. 10, 238–244 (2000).

    Article  CAS  Google Scholar 

  11. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  Google Scholar 

  12. Rao, A. & Craig, A.M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  Google Scholar 

  13. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  14. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  15. Thiagarajan, T.C., Piedras-Renteria, E.S. & Tsien, R.W. alpha- and beta-CaMKII: inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36, 1103–1114 (2002).

    Article  CAS  Google Scholar 

  16. West, A.E. et al. Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. USA 98, 11024–11031 (2001).

    Article  CAS  Google Scholar 

  17. Steward, O. & Schuman, E.M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

    Article  CAS  Google Scholar 

  18. Adams, J.P. & Sweatt, J.D. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163 (2002).

    Article  CAS  Google Scholar 

  19. Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  Google Scholar 

  20. Hicke, L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell. Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  21. Hegde, A.N. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126 (1997).

    Article  CAS  Google Scholar 

  22. Jiang, Y.H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    Article  CAS  Google Scholar 

  23. DiAntonio, A. et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449–452 (2001).

    Article  CAS  Google Scholar 

  24. Wilson, S.M. et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 7, 7 (2002).

    Google Scholar 

  25. Murphey, R. & Godenschwege, T. New roles for ubiquitin in the assembly and function of neuronal circuits. Neuron 36, 5 (2002).

    Article  CAS  Google Scholar 

  26. Hegde, A.N. & DiAntonio, A. Ubiquitin and the synapse. Nat. Rev. Neurosci. 3, 854–861 (2002).

    Article  CAS  Google Scholar 

  27. Burbea, M., Dreier, L., Dittman, J.S., Grunwald, M.E. & Kaplan, J.M. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35, 107–120 (2002).

    Article  CAS  Google Scholar 

  28. Chapman, A.P., Smith, S.J., Rider, C.C. & Beesley, P.W. Multiple ubiquitin conjugates are present in rat brain synaptic membranes and postsynaptic densities. Neurosci. Lett. 168, 238–242 (1994).

    Article  CAS  Google Scholar 

  29. Cho, K.O., Hunt, C.A. & Kennedy, M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs—large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  30. Watt, A.J., van Rossum, M.C., MacLeod, K.M., Nelson, S.B. & Turrigiano, G.G. Activity co-regulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  Google Scholar 

  31. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  32. Boeckers, T.M., Bockmann, J., Kreutz, M.R. & Gundelfinger, E.D. ProSAP/Shank proteins—a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J. Neurochem. 81, 903–910 (2002).

    Article  CAS  Google Scholar 

  33. Liao, D., Zhang, X., O'Brien, R., Ehlers, M.D. & Huganir, R.L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 2, 37–43 (1999).

    Article  CAS  Google Scholar 

  34. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  35. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  36. Michel, J.J. & Scott, J.D. AKAP mediated signal transduction. Annu. Rev. Pharmacol. Toxicol. 42, 235–257 (2002).

    Article  CAS  Google Scholar 

  37. Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  Google Scholar 

  38. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    Article  CAS  Google Scholar 

  39. Hardingham, G.E., Arnold, F.J. & Bading, H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat. Neurosci. 4, 565–566 (2001).

    Article  CAS  Google Scholar 

  40. Hardingham, G.E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  Google Scholar 

  41. Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  Google Scholar 

  42. Sala, C., Rudolph-Correia, S. & Sheng, M. Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20, 3529–3536 (2000).

    Article  CAS  Google Scholar 

  43. Akaaboune, M., Culican, S.M., Turney, S.G. & Lichtman, J.W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).

    Article  CAS  Google Scholar 

  44. Chain, D.G. et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22, 147–156 (1999).

    Article  CAS  Google Scholar 

  45. Campbell, D.S. & Holt, C.E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

  46. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  Google Scholar 

  47. Fong, D.K., Rao, A., Crump, F.T. & Craig, A.M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J. Neurosci. 22, 2153–2164 (2002).

    Article  CAS  Google Scholar 

  48. Minichiello, L. et al. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36, 121 (2002).

    Article  CAS  Google Scholar 

  49. Wu, G.Y., Deisseroth, K. & Tsien, R.W. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151–158 (2001).

    Article  CAS  Google Scholar 

  50. Mammen, A.L., Huganir, R.L. & O'Brien, R.J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank C. Zhang for technical help and J. Hernandez, G. Augustine, T. Blanpied, G. Feng, D. Fitzpatrick, A. Horton, L. Katz, J. McNamara, R. Mooney, Y. Mu, I. Perez-Otano, D. Scott and P. Skene for comments and advice. This work was supported by grants from the NIH (NS39402 and MH64748), McKnight Foundation, Klingenstein Fund, Spinal Cord Research Foundation, NARSAD, Sloan Foundation, Ellison Foundation, Alzheimer's Association and the Muscular Dystrophy Association.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, M. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6, 231–242 (2003). https://doi.org/10.1038/nn1013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing