Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A streamlined platform for high-content functional proteomics of primary human specimens

Abstract

Achieving information content of satisfactory breadth and depth remains a formidable challenge for proteomics. This problem is particularly relevant to the study of primary human specimens, such as tumor biopsies, which are heterogeneous and of finite quantity. Here we present a functional proteomics strategy that unites the activity-based protein profiling and multidimensional protein identification technologies (ABPP-MudPIT) for the streamlined analysis of human samples. This convergent platform involves a rapid initial phase, in which enzyme activity signatures are generated for functional classification of samples, followed by in-depth analysis of representative members from each class. Using this two-tiered approach, we identified more than 50 enzyme activities in human breast tumors, nearly a third of which represent previously uncharacterized proteins. Comparison with cDNA microarrays revealed enzymes whose activity, but not mRNA expression, depicted tumor class, underscoring the power of ABPP-MudPIT for the discovery of new markers of human disease that may evade detection by other molecular profiling methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integration of the ABPP and MudPIT methods for high-content functional proteomics of primary human specimens.
Figure 2: Enzyme activity signatures of primary human breast tumors and normal breast tissue.
Figure 3: Comparison of enzyme activity levels measured by 1DE-ABPP and MudPIT-ABPP.
Figure 4: Comparison of activity and mRNA expression levels for FAP and KIAA1363.

Similar content being viewed by others

References

  1. Kramer, R. & Cohen, D. Functional genomics to new drug targets. Nat. Rev. Drug Discov. 3, 965–972 (2004).

    Article  CAS  Google Scholar 

  2. Patterson, S.D. & Aebersold, R. Proteomics: the first decade and beyond. Nat. Genet. 33, 311–323 (2003).

    Article  CAS  Google Scholar 

  3. Patton, W.F., Schulenberg, B. & Steinberg, T.H. Two-dimensional electrophoresis: better than a poke in the ICAT? Curr. Opin. Biotechnol. 13, 321–328 (2002).

    Article  CAS  Google Scholar 

  4. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  5. Washburn, M.P., Wolters, D. & Yates, J.R., III . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  6. Chaurand, P., Sanders, M.E., Jensen, R.A. & Caprioli, R.M. Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am. J. Pathol. 165, 1057–1068 (2004).

    Article  CAS  Google Scholar 

  7. Petricoin, E.F. & Liotta, L.A. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr. Opin. Biotechnol. 15, 24–30 (2004).

    Article  CAS  Google Scholar 

  8. Durr, E. et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 22, 985–992 (2004).

    Article  CAS  Google Scholar 

  9. Gygi, S.P., Rist, B., Griffin, T.J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1, 47–54 (2002).

    Article  CAS  Google Scholar 

  10. Kobe, B. & Kemp, B.E. Active site-directed protein regulation. Nature 402, 373–376 (1999).

    Article  CAS  Google Scholar 

  11. Zangar, R.C., Varnum, S.M., Covington, C.Y. & Smith, R.D. A rational approach for discovering and validating cancer markers in very small samples using mass spectrometry and ELISA microarrays. Dis. Markers 20, 135–148 (2004).

    Article  Google Scholar 

  12. Jessani, N. & Cravatt, B.F. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol. 8, 54–59 (2004).

    Article  CAS  Google Scholar 

  13. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem. 5, 41–47 (2004).

    Article  CAS  Google Scholar 

  14. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B.F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer invasiveness. Proc. Natl. Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  Google Scholar 

  15. Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. USA 101, 13756–13761 (2004).

    Article  CAS  Google Scholar 

  16. Pang, J.X., Ginanni, N., Dongre, A.R., Hefta, S.A. & Opitek, G.J. Biomarker discovery in urine by proteomics. J. Proteome Res. 1, 161–169 (2002).

    Article  CAS  Google Scholar 

  17. Liu, H., Sadygov, R.G. & Yates, J.R., III . A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    Article  CAS  Google Scholar 

  18. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  19. Andreasen, P.A., Kjoller, L., Christensen, L. & Duffy, M.J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72, 1–22 (1997).

    Article  CAS  Google Scholar 

  20. Huang, Y., Wang, S. & Kelly, T. Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res. 64, 2712–2716 (2004).

    Article  CAS  Google Scholar 

  21. Gallardo-Williams, M.T., Maronpot, R.R., Wine, R.N., Brunssen, S.H. & Chapin, R.E. Inhibition of the enzymatic activity of prostate-specific antigen by boric acid and 3-nitrophenyl boronic acid. Prostate 54, 44–49 (2003).

    Article  Google Scholar 

  22. Okerberg, E.S. et al. High-resolution functional proteomics by active-site peptide profiling. Proc. Natl. Acad. Sci. USA 102, 4996–5001 (2005).

    Article  CAS  Google Scholar 

  23. Chen, W.T., Kelly, T. & Ghersi, G. DPPIV, seprase, and related serine peptidases in multiple cellular functions. Curr. Top. Dev. Biol. 54, 207–232 (2003).

    Article  CAS  Google Scholar 

  24. Arai, H. Platelet-activating factor acetylhydrolase. Prostaglandins Other Lipid Mediat. 68–69, 83–94 (2002).

    Article  Google Scholar 

  25. Sorlie, T. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  Google Scholar 

  26. Huber, M.A. et al. Fibroblast activation protein: differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin tumors. J. Invest. Dermatol. 120, 182–188 (2003).

    Article  CAS  Google Scholar 

  27. Scanlan, M.J. et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl. Acad. Sci. USA 91, 5657–5661 (1994).

    Article  CAS  Google Scholar 

  28. Kelly, T., Kechelava, S., Rozypal, T.L., West, K.W. & Korourian, S. Seprase, a membrane-bound protease, is overexpressed by invasive ductal carcinoma cells of human breast cancers. Mod. Pathol. 11, 855–863 (1998).

    CAS  PubMed  Google Scholar 

  29. Leung, D., Hardouin, C., Boger, D.L. & Cravatt, B.F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  30. Sieber, S.A., Mondala, T.S., Head, S.R. & Cravatt, B.F. Microarray platform for profiling enzyme activities in complex proteomes. J. Am. Chem. Soc. 126, 15640–15641 (2004).

    Article  CAS  Google Scholar 

  31. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20, 805–809 (2002).

    Article  CAS  Google Scholar 

  32. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  33. Barglow, K.T. & Cravatt, B.F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531 (2004).

    Article  CAS  Google Scholar 

  34. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  Google Scholar 

  35. Chan, E.W., Chattopadhaya, S., Panicker, R.C., Huang, X. & Yao, S.Q. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

    Article  CAS  Google Scholar 

  36. Liu, Y. et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem. Biol. 12, 99–107 (2005).

    Article  CAS  Google Scholar 

  37. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  38. Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  Google Scholar 

  39. Zhao, H. et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. Cell 15, 2523–2536 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Cociorva for help with DTASelect and Sequest. This work was supported by the US National Institutes of Health grants CA087660 (to B.F.C.) and HG00030 (to M.N.), the California Breast Cancer Research Foundation (B.F.C. and S.S.J.), the Susan G. Komen Breast Cancer Foundation (B.Q.W.) and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structures of fluorophosphonate (FP) ABPP probes. (PDF 358 kb)

Supplementary Fig. 2

Enzyme activity profiles for primary human breast tumor and normal breast specimens determined by 1D-gel ABPP. (PDF 2922 kb)

Supplementary Fig. 3

Representative gel showing molecular mass annotations of enzyme activities used in the clustering analysis shown in Figure 2b of the manuscript. (PDF 2310 kb)

Supplementary Fig. 4

Gene expression profiles for differentially expressed enzyme activities in primary human breast tumor and normal breast specimens. (PDF 313 kb)

Supplementary Table 1

Clinical data on breast tumors. (PDF 67 kb)

Supplementary Table 2

A complete list of the FP-labeled serine hydrolase activities identified in primary human breast tumor and normal breast specimens. (PDF 66 kb)

Supplementary Table 3

Reproducibility of enzyme activity data for ER(-)/PR(-) breast tumor BC48. (PDF 42 kb)

Supplementary Methods (PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessani, N., Niessen, S., Wei, B. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat Methods 2, 691–697 (2005). https://doi.org/10.1038/nmeth778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing