Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytokine traps: multi-component, high-affinity blockers of cytokine action

Abstract

Cytokines can initiate and perpetuate human diseases, and are among the best-validated of therapeutic targets. Cytokines can be blocked by the use of soluble receptors; however, the use of this approach for cytokines such as interleukin (IL)-1, IL-4, IL-6 and IL-13 that use multi-component receptor systems is limited because monomeric soluble receptors generally exhibit low affinity or function as agonists. We describe here a generally applicable method to create very high-affinity blockers called 'cytokine traps' consisting of fusions between the constant region of IgG and the extracellular domains of two distinct cytokine receptor components involved in binding the cytokine. Traps potently block cytokines in vitro and in vivo and represent a substantial advance in creating novel therapeutic candidates for cytokine-driven diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine trap.
Figure 2: Traps are potent blockers of cytokine action in vitro.
Figure 3: Binding affinity analysis of IL-1 and IL-4 trap.
Figure 4: Traps persist in circulation for many days.
Figure 5: IL-1 trap blocks the action of IL-1β in vivo.
Figure 6: IL-4 trap blocks in vivo effects of IL-4.

Similar content being viewed by others

References

  1. van Deventer, S.J. Anti-TNF antibody treatment of Crohn's disease. Ann. Rheum. Dis. 58 (Suppl. 1), I114–1120 (1999).

    Article  CAS  Google Scholar 

  2. Richard-Miceli, C. & Dougados, M. Tumour necrosis factor-α blockers in rheumatoid arthritis: Review of the clinical experience. Biodrugs 15, 251–259 (2001).

    Article  CAS  Google Scholar 

  3. Elliott, M.J. et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor α. Arthritis Rheum. 36, 1681–1690 (1993).

    Article  CAS  Google Scholar 

  4. Goldenberg, M.M. Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin. Ther. 21, 75–87 (1999).

    Article  CAS  Google Scholar 

  5. Mohler, K.M. et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J. Immunol. 151, 1548–1561 (1993).

    CAS  PubMed  Google Scholar 

  6. Bresnihan, B. et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum. 41, 2196–2204 (1998).

    Article  CAS  Google Scholar 

  7. Cohen, S., Hurd, E. & Cush, J. Treatment of interleukin-1 receptor antagonist in combination with methotrexate in rheumatoid arthritis patients. Arthritis Rheum. 42, S273 (1999).

    Article  Google Scholar 

  8. Nuki, G., Rozman, B. & Pavelka, K. Interleukin-1 receptor antagonist continues to demonstrate clinical improvement in rheumatoid arthritis. Arthritis Rheum. 40, S224 (1997).

    Google Scholar 

  9. Campion, G.V., Lebsack, M.E., Lookabaugh, J., Gordon, G. & Catalano, M. Dose-range and dose-frequency study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis. The IL-1Ra Arthritis Study Group. Arthritis Rheum. 39, 1092–1101 (1996).

    Article  CAS  Google Scholar 

  10. Bresnihan, B. The prospect of treating rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Biodrugs 15, 87–97 (2001).

    Article  CAS  Google Scholar 

  11. Borish, L.C. et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 160, 1816–1823 (1999).

    Article  CAS  Google Scholar 

  12. Borish, L.C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J. Allergy Clin. Immunol. 107, 963–970 (2001).

    Article  CAS  Google Scholar 

  13. Bataille, R. et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 86, 685–691 (1995).

    CAS  PubMed  Google Scholar 

  14. Haddad, E. et al. Treatment of B-lymphoproliferative disorder with a monoclonal anti-interleukin-6 antibody in 12 patients: a multicenter phase 1-2 clinical trial. Blood 97, 1590–1597 (2001).

    Article  CAS  Google Scholar 

  15. Beck, J.T. et al. Brief report: Alleviation of systemic manifestations of Castleman's disease by monoclonal anti-interleukin-6 antibody. N. Engl. J. Med. 330, 602–605 (1994).

    Article  CAS  Google Scholar 

  16. Legouffe, E. et al. Human anti-mouse antibody response to the injection of murine monoclonal antibodies against IL-6. Clin. Exp. Immunol. 98, 323–329 (1994).

    Article  CAS  Google Scholar 

  17. Carpenter, L.R., Yancopoulos, G.D. & Stahl, N. General mechanisms of cytokine receptor signaling. Adv. Protein Chem. 52, 109–140 (1999).

    Article  Google Scholar 

  18. Davis, S. et al. LIFR β and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 260, 1805–1808 (1993).

    Article  CAS  Google Scholar 

  19. Stahl, N. & Yancopoulos, G.D. The alphas, betas, and kinases of cytokine receptor complexes. Cell 74, 587–590 (1993).

    Article  CAS  Google Scholar 

  20. Taga, T. et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58, 573–581 (1989).

    Article  CAS  Google Scholar 

  21. Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  PubMed  Google Scholar 

  22. van den Berg, W.B., Joosten, L.A., Helsen, M. & van de Loo, F.A. Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin. Exp. Immunol. 95, 237–243 (1994).

    Article  CAS  Google Scholar 

  23. Reimers, J. Interleukin-1b induced transient diabetes mellitus in rats. Danish Med. Bull. 45, 157–180 (1998).

    CAS  PubMed  Google Scholar 

  24. van den Berg, W.B. Joint inflammation and cartilage destruction may occur uncoupled. Springer Semin. Immunopathol. 20, 149–164 (1998).

    Article  CAS  Google Scholar 

  25. Joosten, L.A., Helsen, M.M., van de Loo, F.A. & van den Berg, W.B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF α, anti- IL-1 α/β, and IL-1Ra. Arthritis Rheum. 39, 797–809 (1996).

    Article  CAS  Google Scholar 

  26. Cieslewicz, G. et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J. Clin. Invest. 104, 301–308 (1999).

    Article  CAS  Google Scholar 

  27. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    Article  CAS  Google Scholar 

  28. Gundel, R. et al. IL-4 induced leucocyte trafficking in cynomolgus monkeys: correlation with expression of adhesion molecules and chemokine generation. Clin. Exp. Allergy 26, 719–729 (1996).

    Article  CAS  Google Scholar 

  29. Foote, J. & Eisen, H.N. Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. USA 92, 1254–1256 (1995).

    Article  CAS  Google Scholar 

  30. Guler, H.-P. et al. A phase 1, single dose escalation study of IL-1 trap in patients with rheumatoid arthritis. Arthritis Rheum. 44, S370 (2001).

  31. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  Google Scholar 

  32. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  Google Scholar 

  33. Coyle, A.J. et al. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am. J. Respir. Cell Mol. Biol. 13, 54–59 (1995).

    Article  CAS  Google Scholar 

  34. Holash, J. et al. VEGF-trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  Google Scholar 

  35. Kim, E.S. et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Natl. Acad. Sci. USA 99, 11399–11404 (2002).

    Article  CAS  Google Scholar 

  36. Joosten, L.A., Helsen, M.M. & van den Berg, W.B. Accelerated onset of collagen-induced arthritis by remote inflammation. Clin. Exp. Immunol. 97, 204–211 (1994).

    Article  CAS  Google Scholar 

  37. Wooley, P.H. et al. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum. 36, 1305–1314 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Schleifer and P.R. Vagelos for support; X. Wang, L. LaForge, A. Rafique, L. Kovac, H. Wang, E. Pasnikowski, W. Cheng, T. Sterlacci, A. Hijarunguru, A. Sweeney, E. Skop, M. Gunthart, A. Apedo, C. Sheng, S. Valluzzo, A. Coppi, W. Tu, K. Stafford, M. LaFond, K. Audo, M. Karow, P. Krueger, W. Mikulka, J. Martin and Y. Wei for their contributions; S. Staton and V. Lan for graphics; and the Regeneron scientific community and W.P. Jencks for his contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Stahl.

Ethics declarations

Competing interests

All authors are employees of Regeneron Pharmaceuticals, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Economides, A., Carpenter, L., Rudge, J. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 9, 47–52 (2003). https://doi.org/10.1038/nm811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing