Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of anxiety through blockade of anandamide hydrolysis

Abstract

The psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol, produces in humans subjective responses mediated by CB1 cannabinoid receptors, indicating that endogenous cannabinoids may contribute to the control of emotion. But the variable effects of Δ9-tetrahydrocannabinol obscure the interpretation of these results and limit the therapeutic potential of direct cannabinoid agonists. An alternative approach may be to develop drugs that amplify the effects of endogenous cannabinoids by preventing their inactivation. Here we describe a class of potent, selective and systemically active inhibitors of fatty acid amide hydrolase, the enzyme responsible for the degradation of the endogenous cannabinoid anandamide. Like clinically used anti-anxiety drugs, in rats the inhibitors exhibit benzodiazepine-like properties in the elevated zero-maze test and suppress isolation-induced vocalizations. These effects are accompanied by augmented brain levels of anandamide and are prevented by CB1 receptor blockade. Our results indicate that anandamide participates in the modulation of emotional states and point to fatty acid amide hydrolase inhibition as an innovative approach to anti-anxiety therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FAAH inhibitors URB532 and URB597 block [3H]anandamide degradation in intact brain neurons.
Figure 2: In vivo inhibition of FAAH activity by URB532 and URB597.
Figure 3: Anti-nociceptive actions of URB532 and URB597.
Figure 4: Anxiolytic-like actions of URB532 and URB597.

Similar content being viewed by others

References

  1. Devane, W.A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  Google Scholar 

  2. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691 (1994).

    Article  CAS  Google Scholar 

  3. Giuffrida, A. et al. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci. 2, 358–363 (1999).

    Article  CAS  Google Scholar 

  4. Beltramo, M. et al. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277, 1094–1097 (1997).

    Article  CAS  Google Scholar 

  5. Cravatt, B.F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  Google Scholar 

  6. Patricelli, M.P., Lovato, M.A. & Cravatt, B.F. Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties. Biochemistry 38, 9804–9812 (1999).

    Article  CAS  Google Scholar 

  7. Rodríguez de Fonseca, F. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001).

    Article  Google Scholar 

  8. Calignano, A., La Rana, G., Giuffrida, A. & Piomelli, D. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281 (1998).

    Article  CAS  Google Scholar 

  9. Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  Google Scholar 

  10. Hall, W. & Solowij, N. Adverse effects of cannabis. Lancet 352, 1611–1616 (1998).

    Article  CAS  Google Scholar 

  11. Chaperon, F. & Thiébot, M.H. Behavioral effects of cannabinoid agents in animals. Crit. Rev. Neurobiol. 13, 243–281 (1999).

    Article  CAS  Google Scholar 

  12. Koutek, B. et al. Inhibitors of arachidonoyl ethanolamide hydrolysis. J. Biol. Chem. 269, 22937–22940 (1994).

    CAS  PubMed  Google Scholar 

  13. Beltramo, M., di Tomaso, E. & Piomelli, D. Inhibition of anandamide hydrolysis in rat brain tissue by (E)-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one. FEBS Lett. 403, 263–267 (1997).

    Article  CAS  Google Scholar 

  14. De Petrocellis, L. et al. Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase. Biochem. Biophys. Res. Commun. 231, 82–88 (1997).

    Article  CAS  Google Scholar 

  15. Deutsch, D.G. et al. Fatty acid sulfonyl fluorides inhibit anandamide metabolism and bind to the cannabinoid receptor. Biochem. Biophys. Res. Commun. 231, 217–221 (1997).

    Article  CAS  Google Scholar 

  16. Boger, D.L. et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc. Natl. Acad. Sci. USA 97, 5044–5049 (2000).

    Article  CAS  Google Scholar 

  17. Dinh, T.P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  Google Scholar 

  18. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    Article  CAS  Google Scholar 

  19. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    Article  CAS  Google Scholar 

  20. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    Article  CAS  Google Scholar 

  21. Herkenham, M. et al. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 87, 1932–1936 (1990).

    Article  CAS  Google Scholar 

  22. Glass, M., Dragunow, M. & Faull, R.L. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77, 299–318 (1997).

    Article  CAS  Google Scholar 

  23. Katona, I. et al. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J. Neurosci. 21, 9506–9518. (2001).

    Article  CAS  Google Scholar 

  24. Robson, P. Therapeutic aspects of cannabis and cannabinoids. Br. J. Psychiatry 178, 107–115 (2001).

    Article  CAS  Google Scholar 

  25. Rodríguez de Fonseca, F., Carrera, M.R.A., Navarro, M., Koob, G.F. & Weiss, F. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 276, 2050–2054 (1997).

    Article  Google Scholar 

  26. Arévalo, C., de Miguel, R. & Hernández-Tristán, R. Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters. Pharmacol. Biochem. Behav. 70, 123–131 (2001).

    Article  Google Scholar 

  27. Martin, M., Ledent, C., Parmentier, M., Maldonado, R. & Valverde, O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159, 379–387 (2002).

    Article  CAS  Google Scholar 

  28. Bickerdike, M.J., Marsden, C.A., Dourish, C.T. & Fletcher, A. The influence of 5-hydroxytryptamine re-uptake blockade on CCK receptor antagonist effects in the rat elevated zero-maze. Eur. J. Pharmacol. 271, 403–411 (1994).

    Article  CAS  Google Scholar 

  29. Shepherd, J.K., Grewal, S.S., Fletcher, A., Bill, D.J. & Dourish, C.T. Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology 116, 56–64 (1994).

    Article  CAS  Google Scholar 

  30. Insel, T.R., Hill, J.L. & Mayor, R.B. Rat pup ultrasonic isolation calls: possible mediation by the benzodiazepine receptor complex. Pharmacol. Biochem. Behav. 24, 1263–1267 (1986).

    Article  CAS  Google Scholar 

  31. Miczek, K.A., Weerts, E.M., Vivian, J.A. & Barros, H.M. Aggression, anxiety and vocalizations in animals: GABAA and 5-HT anxiolytics. Psychopharmacology 121, 38–56 (1995).

    Article  CAS  Google Scholar 

  32. Winslow, J.T. & Insel, T.R. Infant rat separation is a sensitive test for novel anxiolytics. Prog. Neuropsychopharmacol. Biol. Psychiatry 15, 745–757 (1991).

    Article  CAS  Google Scholar 

  33. Cahill, L. & McGaugh, J.L. Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 21, 294–299 (1998).

    Article  CAS  Google Scholar 

  34. McDonald, A.J. & Mascagni, F. Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: high concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience 107, 641–652 (2001).

    Article  CAS  Google Scholar 

  35. Fink, H., Rex, A., Voits, M. & Voigt, J.P. Major biological actions of CCK: a critical evaluation of research findings. Exp. Brain Res. 123, 77–83 (1998).

    Article  CAS  Google Scholar 

  36. Beinfeld, M.C. & Connolly, K. Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids. Neurosci. Lett. 301, 69–71 (2001).

    Article  CAS  Google Scholar 

  37. Iversen, L. & Chapman, V. Cannabinoids: a real prospect for pain relief? Curr. Opin. Pharmacol. 2, 50–55 (2002).

    Article  CAS  Google Scholar 

  38. Stella, N. & Piomelli, D. Receptor-dependent formation of endogenous cannabinoids in cortical neurons. Eur. J. Pharmacol. 425, 189–196 (2001).

    Article  CAS  Google Scholar 

  39. Giuffrida, A., Rodríguez de Fonseca, F. & Piomelli, D. Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal. Biochem. 280, 87–93 (2000).

    Article  CAS  Google Scholar 

  40. Piomelli, D. et al. Structural determinants for recognition and translocation by the anandamide transporter. Proc. Natl. Acad. Sci. USA 96, 5802–5807 (1999).

    Article  CAS  Google Scholar 

  41. Tseng, A.H. & Craft, R.M. Sex differences in antinociceptive and motoric effects of cannabinoids. Eur. J. Pharmacol. 430, 41–47 (2001).

    Article  CAS  Google Scholar 

  42. Ali, M.M., Bawari, M., Misra, U.K. & Babu, G.N. Locomotor and learning deficits in adult rats exposed to monosodium-L-glutamate during early life. Neurosci. Lett. 284, 57–60 (2000).

    Article  CAS  Google Scholar 

  43. Wedzony, K. et al. WAY 100135, an antagonist of 5-HT1A serotonin receptors, attenuates psychotomimetic effects of MK-801. Neuropsychopharmacology 23, 547–559 (2000).

    Article  CAS  Google Scholar 

  44. Cuomo, V., Cagiano, R., Renna, G., De Salvia, M.A. & Racagni, G. Ultrasonic vocalization in rat pups: effects of early postnatal exposure to SCH 23390 (a DA1-receptor antagonist) and sulpiride (a DA2-receptor antagonist). Neuropharmacology 26, 701–705 (1987).

    Article  CAS  Google Scholar 

  45. Haller, J., Bakus, N., Szirmay, M., Ledent, C. & Freund, T.F. The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur. J. Neurosci. (in the press).

Download references

Acknowledgements

We thank A. Giuffrida and M. Solbrig for critical reading of the manuscript; B. Ferrer and F. Rodríguez de Fonseca for help with initial experiments; and J. Yoo and C. Park for technical assistance. The assistance of the Centro Interfacoltà Misure (CIM) and the Centro di Calcolo at the University of Parma is gratefully acknowledged. This research was supported by grants from the National Institute on Drug Abuse (to D.P.) and from MIUR, CNR and Universities of Parma and Urbino. D.P. is a Staglin Music Festival Investigator of the National Alliance for Research on Schizophrenia and Depression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Piomelli.

Ethics declarations

Competing interests

A patent has been filed, with A.D., A.T., M.M., G.T. and D.P. listed as inventors, the value of which may be affected by the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathuria, S., Gaetani, S., Fegley, D. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9, 76–81 (2003). https://doi.org/10.1038/nm803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing