Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection

Abstract

Secondary bacterial infection often occurs after pulmonary virus infection and is a common cause of severe disease in humans, yet the mechanisms responsible for this viral-bacterial synergy in the lung are only poorly understood. We now report that pulmonary interferon-γ (IFN-γ) produced during T cell responses to influenza infection in mice inhibits initial bacterial clearance from the lung by alveolar macrophages. This suppression of phagocytosis correlates with lung IFN-γ abundance, but not viral burden, and leads to enhanced susceptibility to secondary pneumococcal infection, which can be prevented by IFN-γ neutralization after influenza infection. Direct inoculation of IFN-γ can mimic influenza infection and downregulate the expression of the class A scavenger receptor MARCO on alveolar macrophages. Thus, IFN-γ, although probably facilitating induction of specific anti-influenza adaptive immunity, suppresses innate protection against extracellular bacterial pathogens in the lung.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influenza infection inhibits initial resistance of mice to pneumococcal infection.
Figure 2: Influenza infection impairs alveolar macrophage–mediated bacterial uptake.
Figure 3: IFN-γ expressed after influenza virus infection inhibits initial bacterial clearance in the lung.
Figure 4: Regulatory role of IFN-γ on alveolar macrophage function.
Figure 5: T cell activation after influenza virus infection inhibits initial bacterial clearance in the lung.
Figure 6: IFN-γ neutralization following viral infection restores innate immunity to pneumococci.

Similar content being viewed by others

References

  1. Brundage, J.F. Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness. Lancet Infect. Dis. 6, 303–312 (2006).

    Article  Google Scholar 

  2. Stiver, H.G. The threat and prospects for control of an influenza pandemic. Expert Rev. Vaccines 3, 35–42 (2004).

    Article  Google Scholar 

  3. Spooner, L.H., Scoot, L.H. & Heath, E.H. A bacteriologic study of the influenza epidemic at Camp Devens, Mass. J. Am. Med. Assoc. 72, 155–159 (1919).

    Article  Google Scholar 

  4. Hall, J.N., Stone, M.C. & Simpson, J.C. The epidemic of pneumonia following influenza at Camp Logan, Texas. J. Am. Med. Assoc. 71, 1986–1987 (1918).

    Article  Google Scholar 

  5. Klugman, K.P. & Madhi, S.A. Pneumococcal vaccines and flu preparedness. Science 316, 49–50 (2007).

    Article  CAS  Google Scholar 

  6. Craft, A.W., Reid, M.M. & Low, W.T. Effect of virus infections on polymorph function in children. BMJ 1, 1570 (1976).

    Article  CAS  Google Scholar 

  7. Abramson, J.S., Giebink, G.S., Mills, E.L. & Quie, P.G. Polymorphonuclear leukocyte dysfunction during influenza virus infection in chinchillas. J. Infect. Dis. 143, 836–845 (1981).

    Article  CAS  Google Scholar 

  8. McNamee, L.A. & Harmsen, A.G. Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect. Immun. 74, 6707–6721 (2006).

    Article  CAS  Google Scholar 

  9. van der Sluijs, K.F. et al. Involvement of the platelet-activating factor receptor in host defense against Streptococcus pneumoniae during postinfluenza pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L194–L199 (2006).

    Article  CAS  Google Scholar 

  10. McCullers, J.A. & Rehg, J.E. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J. Infect. Dis. 186, 341–350 (2002).

    Article  CAS  Google Scholar 

  11. van der Sluijs, K.F. et al. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J. Immunol. 172, 7603–7609 (2004).

    Article  CAS  Google Scholar 

  12. van der Sluijs, K.F. et al. Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J. Infect. Dis. 193, 214–222 (2006).

    Article  CAS  Google Scholar 

  13. LeVine, A.M., Koeningsknecht, V. & Stark, J.M. Decreased pulmonary clearance of S. pneumoniae following influenza A infection in mice. J. Virol. Methods 94, 173–186 (2001).

    Article  CAS  Google Scholar 

  14. Dockrell, D.H. et al. Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J. Immunol. 171, 5380–5388 (2003).

    Article  CAS  Google Scholar 

  15. Cleret, A., Quesnel-Hellmann, A., Mathieu, J., Vidal, D. & Tournier, J.N. Resident CD11c+ lung cells are impaired by anthrax toxins after spore infection. J. Infect. Dis. 194, 86–94 (2006).

    Article  CAS  Google Scholar 

  16. La Gruta, N.L., Kedzierska, K., Stambas, J. & Doherty, P.C. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol. 85, 85–92 (2007).

    Article  Google Scholar 

  17. Brown, D.M., Dilzer, A.M., Meents, D.L. & Swain, S.L. CD4 T cell–mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 177, 2888–2898 (2006).

    Article  CAS  Google Scholar 

  18. Arredouani, M. et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 200, 267–272 (2004).

    Article  CAS  Google Scholar 

  19. Speert, D.P. & Thorson, L. Suppression by human recombinant γ interferon of in vitro macrophage nonopsonic and opsonic phagocytosis and killing. Infect. Immun. 59, 1893–1898 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lundborg, M., Johansson, A., Lastbom, L. & Camner, P. Ingested aggregates of ultrafine carbon particles and interferon-γ impair rat alveolar macrophage function. Environ. Res. 81, 309–315 (1999).

    Article  CAS  Google Scholar 

  21. Swain, S.L., Dutton, R.W. & Woodland, D.L. T cell responses to influenza virus infection: effector and memory cells. Viral Immunol. 17, 197–209 (2004).

    Article  CAS  Google Scholar 

  22. Carneiro-Sampaio, M. & Coutinho, A. Immunity to microbes: lessons from primary immunodeficiencies. Infect. Immun. 75, 1544–1555 (2007).

    Article  Google Scholar 

  23. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  Google Scholar 

  24. Couch, R.B. The effects of influenza on host defenses. J. Infect. Dis. 144, 284–291 (1981).

    Article  CAS  Google Scholar 

  25. McCullers, J.A. Insights into the interaction between influenza virus and pneumococcus. Clin. Microbiol. Rev. 19, 571–582 (2006).

    Article  CAS  Google Scholar 

  26. Nugent, K.M. & Pesanti, E.L. Tracheal function during influenza infections. Infect. Immun. 42, 1102–1108 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayden, F.G. et al. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J. Clin. Invest. 101, 643–649 (1998).

    Article  CAS  Google Scholar 

  28. Kaiser, L., Fritz, R.S., Straus, S.E., Gubareva, L. & Hayden, F.G. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J. Med. Virol. 64, 262–268 (2001).

    Article  CAS  Google Scholar 

  29. McCullers, J.A. & Bartmess, K.C. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J. Infect. Dis. 187, 1000–1009 (2003).

    Article  CAS  Google Scholar 

  30. Price, G.E., Gaszewska-Mastarlarz, A. & Moskophidis, D. The role of α/β and γ interferons in development of immunity to influenza A virus in mice. J. Virol. 74, 3996–4003 (2000).

    Article  CAS  Google Scholar 

  31. Wiley, J.A., Cerwenka, A., Harkema, J.R., Dutton, R.W. & Harmsen, A.G. Production of interferon-γ by influenza hemagglutinin–specific CD8 effector T cells influences the development of pulmonary immunopathology. Am. J. Pathol. 158, 119–130 (2001).

    Article  CAS  Google Scholar 

  32. Didierlaurent, A. et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J. Exp. Med. 205, 323–329 (2008).

    Article  CAS  Google Scholar 

  33. Holt, P.G. et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 177, 397–407 (1993).

    Article  CAS  Google Scholar 

  34. Thepen, T., Hoeben, K., Breve, J. & Kraal, G. Alveolar macrophages down-regulate local pulmonary immune responses against intratracheally administered T cell–dependent, but not T cell–independent antigens. Immunology 76, 60–64 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thepen, T., Van Rooijen, N. & Kraal, G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J. Exp. Med. 170, 499–509 (1989).

    Article  CAS  Google Scholar 

  36. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    Article  CAS  Google Scholar 

  37. Bot, A., Bot, S. & Bona, C.A. Protective role of γ interferon during the recall response to influenza virus. J. Virol. 72, 6637–6645 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kodihalli, S., Sivanandan, V., Nagaraja, K.V., Shaw, D. & Halvorson, D.A. Effect of avian influenza virus infection on the phagocytic function of systemic phagocytes and pulmonary macrophages of turkeys. Avian Dis. 38, 93–102 (1994).

    Article  CAS  Google Scholar 

  39. Jakab, G.J. Immune impairment of alveolar macrophage phagocytosis during influenza virus pneumonia. Am. Rev. Respir. Dis. 126, 778–782 (1982).

    CAS  PubMed  Google Scholar 

  40. Kim, K.D. et al. Adaptive immune cells temper initial innate responses. Nat. Med. 13, 1248–1252 (2007).

    Article  CAS  Google Scholar 

  41. Palm, N.W. & Medzhitov, R. Not so fast: adaptive suppression of innate immunity. Nat. Med. 13, 1142–1144 (2007).

    Article  CAS  Google Scholar 

  42. Barton, E.S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  Google Scholar 

  43. Raju, B. et al. Aerosolized γ interferon (IFN-γ) induces expression of the genes encoding the IFN-γ–inducible 10-kilodalton protein but not inducible nitric oxide synthase in the lung during tuberculosis. Infect. Immun. 72, 1275–1283 (2004).

    Article  CAS  Google Scholar 

  44. van der Laan, L.J. et al. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J. Immunol. 162, 939–947 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant RO1 AI41715. We thank J. Zhang and G. Kirimanjeswara for critical reading of the manuscript. Pneumococcal strain A66.1 was provided by D. Briles, University of Alabama at Birmingham. Pneumococcal strain D39 is provided by J. Zhang, Albany Medical College. Clodronate was a gift from Roche Diagnostics. We also thank the Center for Immunology and Microbial Disease Immunology Core Laboratory for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

K.S. performed the experimental work and D.W.M. supervised the project. The manuscript was written by K.S. and D.W.M.

Corresponding author

Correspondence to Dennis W Metzger.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6 and Supplementary Methods (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Metzger, D. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat Med 14, 558–564 (2008). https://doi.org/10.1038/nm1765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing