Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse

Abstract

The widespread distribution of the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) in the adult brain1 suggests its role in a broad range of brain functions. Here we show evidence supporting a physical interaction of PTEN with a region in the third intracellular loop (3L4F) of the serotonin 5-HT2C receptor (5-HT2cR, formerly 5-HT1c receptor2) in cell cultures. PTEN limits agonist-induced phosphorylation of 5-HT2cR through its protein phosphatase activity. We showed the probable existence of PTEN:5-HT2cR complexes in putative dopaminergic neurons in the rat ventral tegmental area (VTA), a brain region in which virtually all abused drugs exert rewarding effects by activating its dopamine neurons3,4. We synthesized the interfering peptide Tat-3L4F, which is able to disrupt PTEN coupling with 5-HT2cR. Systemic application of Tat-3L4F or the 5-HT2cR agonist Ro600175 suppressed the increased firing rate of VTA dopaminergic neurons induced by Δ9-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana. Using behavioral tests, we found that Tat-3L4F or Ro600175 blocks conditioned place preference of THC or nicotine, and that Ro600175, but not Tat-3L4F, produces anxiogenic effects, penile erection, hypophagia and motor functional suppression. These results suggest a potential strategy for treating drug addiction with the Tat-3L4F peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of PTEN with 5-HT2cR in PC12 cells.
Figure 2: Interaction and coexpression of PTEN and 5-HT2cR in the rat VTA.
Figure 3: Modulation of the firing rate of VTA dopamine neurons by Ro600175 (Ro), SB242084 (SB), Tat-3L4F (3L4F) and Tat-3L5F (3L5F).
Figure 4: Behavioral effects of Tat-3L4F (3L4F, 0.1 μmol/kg), Tat-3L5F (3L5F, 0.1 μmol/kg) and Ro600175 (Ro, 3 mg/kg).

Similar content being viewed by others

References

  1. Lachyankar, M.B. et al. A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 20, 1404–1413 (2000).

    Article  CAS  Google Scholar 

  2. Julius, D., MacDermott, A.B., Axel, R. & Jessell, T.M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241, 558–564 (1988).

    Article  CAS  Google Scholar 

  3. Lupica, C.R., Riegel, A.C. & Hoffman, A.F. Marijuana and cannabinoid regulation of brain reward circuits. Br. J. Pharmacol. 143, 227–234 (2004).

    Article  CAS  Google Scholar 

  4. Nestler, E.J. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 25, 210–218 (2004).

    Article  CAS  Google Scholar 

  5. Steelman, L.S., Bertrand, F.E. & McCubrey, J.A. The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin. Ther. Targets 8, 537–550 (2004).

    Article  CAS  Google Scholar 

  6. Li, L., Liu, F. & Ross, A.H. PTEN regulation of neural development and CNS stem cells. J. Cell. Biochem. 88, 24–28 (2003).

    Article  CAS  Google Scholar 

  7. Ning, K. et al. Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J. Neurosci. 24, 4052–4060 (2004).

    Article  CAS  Google Scholar 

  8. Backstrom, J.R., Price, R.D., Reasoner, D.T. & Sanders-Bush, E. Deletion of the serotonin 5–HT2C receptor PDZ recognition motif prevents receptor phosphorylation and delays resensitization of receptor responses. J. Biol. Chem. 275, 23620–23626 (2000).

    Article  CAS  Google Scholar 

  9. Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614–1617 (1998).

    Article  CAS  Google Scholar 

  10. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  Google Scholar 

  11. Furnari, F.B., Lin, H., Huang, H.S. & Cavenee, W.K. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc. Natl. Acad. Sci. USA 94, 12479–12484 (1997).

    Article  CAS  Google Scholar 

  12. Weng, L.P., Brown, J.L. & Eng, C. PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum. Mol. Genet. 10, 599–604 (2001).

    Article  CAS  Google Scholar 

  13. Pompeiano, M., Palacios, J.M. & Mengod, G. Distribution of the serotonin 5–HT2 receptor family mRNAs: comparison between 5–HT2A and 5–HT2C receptors. Brain Res. Mol. Brain Res. 23, 163–178 (1994).

    Article  CAS  Google Scholar 

  14. Di Matteo, V., Cacchio, M., Di Giulio, C. & Esposito, E. Role of serotonin(2C) receptors in the control of brain dopaminergic function. Pharmacol. Biochem. Behav. 71, 727–734 (2002).

    Article  CAS  Google Scholar 

  15. Higgins, G.A. & Fletcher, P.J. Serotonin and drug reward: focus on 5–HT2C receptors. Eur. J. Pharmacol. 480, 151–162 (2003).

    Article  CAS  Google Scholar 

  16. Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298, 846–850 (2002).

    Article  CAS  Google Scholar 

  17. Clifton, P.G., Lee, M.D. & Dourish, C.T. Similarities in the action of Ro 60–0175, a 5–HT2C receptor agonist, and d-fenfluramine on feeding patterns in the rat. Psychopharmacology (Berl.) 152, 256–267 (2000).

    Article  CAS  Google Scholar 

  18. Grottick, A.J., Fletcher, P.J. & Higgins, G.A. Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J. Pharmacol. Exp. Ther. 295, 1183–1191 (2000).

    CAS  PubMed  Google Scholar 

  19. Alves, S.H., Pinheiro, G., Motta, V., Landeira-Fernandez, J. & Cruz, A.P. Anxiogenic effects in the rat elevated plus-maze of 5-HT(2C) agonists into ventral but not dorsal hippocampus. Behav. Pharmacol. 15, 37–43 (2004).

    Article  CAS  Google Scholar 

  20. Wood, M.D. Therapeutic potential of 5–HT2C receptor antagonists in the treatment of anxiety disorders. Curr. Drug Targets CNS Neurol. Disord. 2, 383–387 (2003).

    Article  CAS  Google Scholar 

  21. Cheer, J.F., Marsden, C.A., Kendall, D.A. & Mason, R. Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience. 99, 661–667 (2000).

    Article  CAS  Google Scholar 

  22. Johnson, S.W. & North, R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    Article  CAS  Google Scholar 

  23. Szabo, B., Siemes, S. & Wallmichrath, I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci. 15, 2057–2061 (2002).

    Article  Google Scholar 

  24. Backstrom, J.R. & Sanders-Bush, E. Generation of anti-peptide antibodies against serotonin 5–HT2A and 5–HT2C receptors. J. Neurosci. Methods 77, 109–117 (1997).

    Article  CAS  Google Scholar 

  25. Zhang, X. et al. Susceptibility to kindling and neuronal connections of the anterior claustrum. J. Neurosci. 21, 3674–3687 (2001).

    Article  CAS  Google Scholar 

  26. Paxinos, G. & Watson, C. The rat brain stereotaxic co-ordinates, 2nd edition. (Academic Press, New York, 1986).

    Google Scholar 

  27. Bunney, B.S., Walters, J.R., Roth, R.H. & Aghajanian, G.K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185, 560–571 (1973).

    CAS  PubMed  Google Scholar 

  28. Braida, D., Iosue, S., Pegorini, S. & Sala, M. Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur. J. Pharmacol. 506, 63–69 (2004).

    Article  CAS  Google Scholar 

  29. Hannesson, D.K. et al. Dorsal hippocampal kindling produces a selective and enduring disruption of hippocampally mediated behavior. J. Neurosci. 21, 4443–4450 (2001).

    Article  CAS  Google Scholar 

  30. Rice, H.B. & Corwin, R.L. mCPP-induced hypophagia in rats is unaffected by the profile of dietary unsaturated fatty acids. Pharmacol. Biochem. Behav. 73, 545–550 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes of Health Research (CIHR) and Natural Sciences and Engineering Research Council of Canada awarded to X.Z., who is the recipient of the CIHR New Investigator Award. S.-P.J. and W.J. were supported by Postdoctoral Fellowship Awards from the Saskatchewan Health Research Foundation, Canada. We thank Y. Li and G. Kort for technical assistance and X. Wu for confocal imaging. G129R and G129E were provided by F. Furnari at the Ludwig Institute for Cancer Research, University of California at San Diego. We also thank M. Tamura at the US National Institutes of Health for providing wild-type PTEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, SP., Zhang, Y., Van Cleemput, J. et al. Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med 12, 324–329 (2006). https://doi.org/10.1038/nm1349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1349

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing