Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs

Abstract

A wide variety of neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates. More recently, the genetic identification of mutations in familial counterparts to the sporadic disorders, leading to the development of in vitro and in vivo model systems, has provided insights into disease pathogenesis. The effect of many of these mutations is the abnormal processing of misfolded proteins that overwhelms the quality-control systems of the cell, resulting in the deposition of protein aggregates in the nucleus, cytosol and/or extracellular space. Further understanding of mechanisms regulating protein processing and aggregation, as well as of the toxic effects of misfolded neurodegenerative disease proteins, will facilitate development of rationally designed therapies to treat and prevent these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of protein misfolding and fibrillization, leading to the deposition of aggregated protein in the nucleus, cytoplasm and extracellular space.

Deborah Maizels

Figure 2: Protein aggregates in neurodegenerative disease.
Figure 3

Deborah Maizels

Similar content being viewed by others

References

  1. Alzheimer, A. Über eine eigenartige Eskrankung der Nirnrinde. Allg. Z. Psychiatr. Psych.-Gerichtl. 64, 146–148 (1907).

    Google Scholar 

  2. Lewy, F. in Handbuch der Neurologie, 3, 920–933. Springer Vertag, Berlin (1912).

    Google Scholar 

  3. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, V.M.-Y., Balin, B.J., Otvos, L., Jr. & Trojanowski, J.Q. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251, 675–678 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Spillantini, M.G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization. Active ageing: a policy framework. Second United Nations World Assembly on Aging, Madrid, Spain (World Health Organization, Geneva, 2002). www.who.int/hpr/ageing/ActiveAgingPolicyFrame.pdf

  8. Hebert, L.E., Scherr, P.A., Bienias, J.L., Bennett, D.A. & Evans, D.A. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol. 60, 1119–1122 (2003).

    Article  PubMed  Google Scholar 

  9. Wancata, J., Musalek, M., Alexandrowicz, R. & Krautgartner, M. Number of dementia sufferers in Europe between the years 2000 and 2050. Eur. Psychiatry 18, 306–313 (2003).

    Article  PubMed  Google Scholar 

  10. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Chartier-Harlin, M.C. et al. Early-onset alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. De Strooper, B. & Annaert, W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113, 1857–1870 (2000).

    CAS  PubMed  Google Scholar 

  17. Haass, C. & De Strooper, B. The presenilins in Alzheimer's disease—proteolysis holds the key. Science 286, 916–919 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Price, D.L. & Sisodia, S.S. Mutant genes in familial Alzheimer's disease and transgenic models. Annu. Rev. Neurosci. 21, 479–505 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. De Strooper, B. Aph-1, Pen-2, and nicastrin with presenilin generate an active γ-secretase complex. Neuron 38, 9–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Corder, E.H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Poirier, J. Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer's disease. Trends Mol. Med. 9, 94–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Puglielli, L., Tanzi, R.E. & Kovacs, D.M. Alzheimer's disease: the cholesterol connection. Nat. Neurosci. 6, 345–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Tanzi, R.E. & Bertram, L. New frontiers in Alzheimer's disease genetics. Neuron 32, 181–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Launer, L. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer's disease: dissecting the epidemiological evidence. Drugs 63, 731–739 (2003).

    Article  PubMed  Google Scholar 

  28. Götz, J. et al. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol. Psychiatry 9, 664–683 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Bonini, N.M. & Fortini, M.E. Human neurodegenerative disease modeling using Drosophila. Annu. Rev. Neurosci. 26, 627–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Götz, J., Chen, F., Van Dorpe, J. & Nitsch, R.M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293, 1491–1495 (2001).

    Article  PubMed  Google Scholar 

  31. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Oddo, S., Billings, L., Kesslak, J.P., Cribbs, D.H. & LaFerla, F.M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Monsonego, A. & Weiner, H.L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Oddo, S., Billings, L., Kesslak, J.P., Cribbs, D.H. & LaFerla, F.M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, V.M.-Y., Goedert, M. & Trojanowski, J.Q. Neurodegenerative tauopathies. Ann. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Spillantini, M.G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA 95, 7737–7741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Billingsley, M.L. & Kincaid, R.L. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. 323, 577–591 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yen, S.H., Hutton, M., DeTure, M., Ko, L.W. & Nacharaju, P. Fibrillogenesis of tau: insights from tau missense mutations in FTDP-17. Brain Pathol. 9, 695–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wittmann, C.W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Giasson, B.I. et al. Initiation and synergistic fibrillization of tau and α-synuclein. Science 300, 636–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Goedert, M. α-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Polymeropoulos, M.H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Singleton, A.B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Zarranz, J.J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ischiropoulos, H. Oxidative modifications of α-synuclein. Ann. N.Y. Acad. Sci. 991, 93–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Maries, E., Dass, B., Collier, T.J., Kordower, J.H. & Steece-Collier, K. The role of α-synuclein in Parkinson's disease: insights from animal models. Nat. Rev. Neurosci. 4, 727–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Auluck, P.K. & Bonini, N.M. Pharmacological prevention of Parkinson disease in Drosophila. Nat. Med. 8, 1185–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M.-Y. & Bonini, N.M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Giasson, B.I. & Lee, V.M.-Y. Are ubiquitination pathways central to Parkinson's disease? Cell 114, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Valente, E.M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Lin, X., Cummings, C.J. & Zoghbi, H.Y. Expanding our understanding of polyglutamine diseases through mouse models. Neuron 24, 499–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Skinner, P.J. et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Ross, C.A. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147–1150 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Bonini, N.M. Chaperoning brain degeneration. Proc. Natl. Acad. Sci. USA 99, 16407–16411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ross, C.A. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35, 819–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Lipinski, M.M. & Yuan, J. Mechanisms of cell death in polyglutamine expansion diseases. Curr. Opin. Pharmacol. 4, 85–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. La Spada, A.R. & Taylor, J.P. Polyglutamines placed into context. Neuron 38, 681–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Lomen-Hoerth, C. et al. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60, 1094–1097 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Bruijn, L.I., Miller, T.M. & Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 29, 160–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Julien, J.P. Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 104, 581–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Prusiner, S.B., Scott, M.R., DeArmond, S.J. & Cohen, F.E. Prion protein biology. Cell 93, 337–348 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Collins, S.J., Lawson, V.A. & Masters, C.L. Transmissible spongiform encephalopathies. Lancet 363, 51–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Kocisko, D.A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Weissmann, C. & Flechsig, E. PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull. 66, 43–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Telling, G.C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Chesebro, B. BSE and prions: uncertainties about the agent. Science 279, 42–43 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Brown, P. Drug therapy in human and experimental transmissible spongiform encephalopathy. Neurology 58, 1720–1725 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Uptain, S.M. & Lindquist, S. Prions as protein-based genetic elements. Annu. Rev. Microbiol. 56, 703–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. King, C.Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Knopman, D.S. et al. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol. 62, 1087–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Koistinaho, M. et al. Specific spatial learning deficits become severe with age in β -amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. USA 98, 14675–14680 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Sisodia, S.S. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Klement, I.A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Walsh, D.M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Conway, K.A., Harper, J.D. & Lansbury, P.T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Taylor, J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Wolozin, B. & Behl, C. Mechanisms of neurodegenerative disorders: Part 1: protein aggregates. Arch. Neurol. 57, 793–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Pasinelli, P. et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Forman, M.S. Genotype-phenotype correlations in FTDP-17: does form follow function? Exp. Neurol. 187, 229–234 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the patients and their caregivers who have facilitated the study of these neurodegenerative diseases. V.M.Y.L. is the John H. Ware III Professor of Alzheimer's disease research. J.Q.T. is the William Maul Measey–Truman G. Schnabel, Jr. Professor of Geriatric Medicine and Gerontology. M.S.F. is supported by a Mentored Clinical Scientist Development Award from the National Institute on Aging, K08 AG20073-01. The authors acknowledge support for their research from the US National Institutes of Health (P01 AG09215, P30 AG10124, P01 AG11542, P01 AG14382, P01 AG14449, P01 AG17586, P01 NS044233). Because of space limitations in this historical perspective, many of the citations here are reviews wherein the references to the primary literature may be found.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forman, M., Trojanowski, J. & Lee, VY. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10, 1055–1063 (2004). https://doi.org/10.1038/nm1113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing