Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia

Abstract

Nitric oxide (NO) and peroxynitrite, formed from NO and superoxide anion, have been implicated as mediators of neuronal damage following focal ischemia, but their molecular targets have not been defined. One candidate pathway is DNA damage leading to activation of the nuclear enzyme, poly(ADP-ribose) polymerase (PARP), which catalyzes attachment of ADP ribose units from NAD to nuclear proteins following DNA damage. Excessive activation of PARP can deplete NAD and ATP, which is consumed in regeneration of NAD, leading to cell death by energy depletion. We show that genetic disruption of PARP provides profound protection against glutamate-NO-mediated ischemic insults in vitro and major decreases in infarct volume after reversible middle cerebral artery occlusion. These results provide compelling evidence for a primary involvement of PARP activation in neuronal damage following focal ischemia and suggest that therapies designed towards inhibiting PARP may provide benefit in the treatment of cerebrovascular disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berger, N.A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4–15 (1985).

    Article  CAS  Google Scholar 

  2. Lautier, D., Lagueux, J., Thibodeau, J., Menard, L. & Poirier, G.G. Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol. Cell. Biochem. 122, 171–193 (1993).

    Article  CAS  Google Scholar 

  3. de Murcia, G. et al. Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 138, 15–24 (1994).

    Article  CAS  Google Scholar 

  4. Althaus, F.R. & Richter, C. ADP-ribosylation of proteins: Enzymology and biological significance. Mol. Biol. Biochem. Biophys. 37, 1–237 (1987).

    CAS  PubMed  Google Scholar 

  5. de Murcia, G. & Menissier de Murcia, J. Poly(ADP-ribose) polymerase: A molecular nick-sensor. Trends Biochem. Sci. 19, 172–176 (1994).

    Article  CAS  Google Scholar 

  6. Lipton, S.A. & Rosenberg, P.A. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622 (1994).

    Article  CAS  Google Scholar 

  7. Meldrum, B. & Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–387 (1990).

    Article  CAS  Google Scholar 

  8. Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  9. Dawson, T.M. & Dawson, V.L. Protection of the brain from ischemia, in Cerebrovascular Disease (ed. Batjer, H.H.) 319–325 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  10. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S. & Snyder, S.H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88, 6368–6371 (1991).

    Article  CAS  Google Scholar 

  11. Dawson, V.L., Dawson, T.M., Bartley, D.A., Uhl, G.R. & Snyder, S.H. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661 (1993).

    Article  CAS  Google Scholar 

  12. Dawson, V.L., Kizushi, V.M., Huang, P.L., Snyder, S.H. & Dawson, T.M. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase deficient mice. J. Neurosci. 16, 2479–2487 (1996).

    Article  CAS  Google Scholar 

  13. Iadecola, C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 20, 132–139 (1997).

    Article  CAS  Google Scholar 

  14. Huang, Z. et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885 (1994).

    Article  CAS  Google Scholar 

  15. Beckman, J.S. & Crow, J.P. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 21, 330–334 (1993).

    Article  CAS  Google Scholar 

  16. Radons, J. et al. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem. Biophys. Res. Commun. 199, 1270–1277 (1994).

    Article  CAS  Google Scholar 

  17. Zhang, J., Dawson, V.L., Dawson, T.M. & Snyder, S.H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263, 687–689 (1994).

    Article  CAS  Google Scholar 

  18. Zhang, J., Pieper, A. & Snyder, S.H. Poly(ADP-ribose) synthetase activation: An early indicator of neurotoxic DNA damage. J. Neurochem. 65, 1411–1414 (1995).

    Article  CAS  Google Scholar 

  19. Wang, Z.-Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509–520 (1995).

    Article  CAS  Google Scholar 

  20. Suto, M.J., Turner, W.R., Arundel-Suto, C.M., Werbel, L.M. & Sebolt-Leopold, J.S., Dihydroisoquinolinones: The design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des. 6, 107–117 (1991).

    CAS  PubMed  Google Scholar 

  21. Banasik, M., Komura, H., Shimoyama, M. & Ueda, K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 267, 1569–1575 (1992).

    CAS  PubMed  Google Scholar 

  22. Banasik, M. & Ueda, K. Inhibitors and activators of ADP-ribosylation reactions. Mol. Cell. Biochem. 138, 185–197 (1994).

    Article  CAS  Google Scholar 

  23. Wang, Z.-Q. et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. (in the press).

  24. Chan, P.H., Chu, L., Chen, S.F., Carlson, E.J. & Epstein, C.J. Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke 21 (Suppl.), 11180–11182 (1990).

    Google Scholar 

  25. Choi, D.W. Cerebral hypoxia: Some new approaches and unanswered questions. J. Neurosci. 10, 2493–2501 (1990).

    Article  CAS  Google Scholar 

  26. Dawson, T.M. & Snyder, S.H. Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurosci. 14, 5147–5159 (1994).

    Article  CAS  Google Scholar 

  27. Sharkey, J. & Butcher, S.P. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371, 336–339 (1994).

    Article  CAS  Google Scholar 

  28. Kinouchi, H. et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88, 11158–11162 (1991).

    Article  CAS  Google Scholar 

  29. Yang, G. et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–170 (1994).

    Article  Google Scholar 

  30. Endres, M., Wang, Z.-Q., Namura, S., Waeber, C. & Moskowitz, M.A. Ischemic brain injury is mediated by the activation of poly(ADP-ribose) polymerase. J. Cereb. Blood Flow Metab. (in the press).

  31. Simpson, E.M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genet. 16, 19–27 (1997).

    Article  CAS  Google Scholar 

  32. Takahashi, K., Greenberg, J.H., Jackson, P., Maclin, K. & Zhang, J. Effect of inhibition of poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. Neurosci. Abstr. (in the press).

  33. Mizumoto, K., Glascott, P.A., Jr., & Farber, J.L. Roles for oxidative stress and poly(ADP-ribosyl)ation in the killing of cultured hepatocytes by methyl methanesul-fonate. Biochem. Pharmacol. 46, 1811–1818 (1993).

    Article  CAS  Google Scholar 

  34. Heller, B. et al. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem. 270, 11176–11180 (1995).

    Article  CAS  Google Scholar 

  35. Thiemermann, C., Bowes, J., Myint, F.P. & Vane, J.R. Inhibition of the activity of poly(ADP ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc. Natl. Acad. Sci. USA 94, 679–683 (1997).

    Article  CAS  Google Scholar 

  36. Thies, R.L. & Autor, A.P. Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance. Arch. Biochem. Biophys. 286, 353–363 (1991).

    Article  CAS  Google Scholar 

  37. Hudak, B.B., Tufariello, J., Sokolowski, J., Maloney, C. & Holm, B.A. Inhibition of poly(ADP-ribose) polymerase preserves surfactant synthesis after hydrogen peroxide exposure. Am. J. Physiol. 269, L59–L64 (1995).

    CAS  PubMed  Google Scholar 

  38. Kirkland, J.B. Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: Role of activation of poly(ADP-ribose)polymerase. Biochem. Biophys. Acta 1092, 319–325 (1991).

    Article  CAS  Google Scholar 

  39. Said, S.I., Berisha, H.I. & Pakbaz, H. Excitotoxicity in the lung: N-Methyl-D-aspartate-induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 93, 4688–4692 (1996).

    Article  CAS  Google Scholar 

  40. Szabo, C., Zingarelli, B., O'Connor, M. & Salzman, A.L. DNA strand breakage, activation of poly(ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA 93, 1753–1758 (1996).

    Article  CAS  Google Scholar 

  41. Szabo, C., Saunders, C., O'Connor, M. & Salzman, A.L. Peroxynitrite causes energy depletion and increases permeability via activation of poly(ADP-ribose) synthetase in pulmonary epithelial cells. Am. J. Respir. Cell. Mol. Biol. 16, 105–109 (1997).

    Article  CAS  Google Scholar 

  42. Dawson, T.M., Bredt, D.S., Fotuhi, M., Hwang, P.M. & Snyder, S.H. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 88, 7797–7801 (1991).

    Article  CAS  Google Scholar 

  43. Bredt, D.S. et al. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615–624 (1991).

    Article  CAS  Google Scholar 

  44. Kaku, D.A., Goldberg, M.P. & Choi, D.W. Antagonism of non-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res. 554, 344–337 (1991).

    Article  CAS  Google Scholar 

  45. Monyer, H. et al. Oxygen or glucose deprivation-induced neuronal injury in cortical cell cultures is reduced by tetanus toxin. Neuron 8, 967–973 (1992).

    Article  CAS  Google Scholar 

  46. Bederson, J.B. et al. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17, 1304–1308 (1986).

    Article  CAS  Google Scholar 

  47. Kupper, J.H., van Gool, L., Muller, M. & Burkle, A. Detection of poly(ADP-ribose) polymerase and its reaction product poly(ADP-ribose) by immunocytochemistry. Histochem. J. 28, 391–395 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliasson, M., Sampei, K., Mandir, A. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3, 1089–1095 (1997). https://doi.org/10.1038/nm1097-1089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1097-1089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing