Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thrombin receptor overexpression in malignant and physiological invasion processes

Abstract

Although the involvement of soluble and matrix-immobilized proteases in tumor cell invasion and metastasis is well recognized, the role of proteolytically activated cell surface receptors has not been elucidated. We report here that thrombin receptor, a member of the protease-activated receptor family, is preferentially expressed in highly metastatic human breast carcinoma cell lines and breast carcinoma biopsy specimens. Introduction of thrombin receptor antisense cDNA considerably inhibited the invasion of metastatic breast carcinoma cells in culture through a reconstituted basement membrane. During placental implantation of the human embryo, thrombin receptor is transiently expressed in the invading cytotrophoblasts. These results emphasize the involvement of thrombin receptor in cell invasion associated with tumor progression and normal embryonic development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Redman, C.W.G. Cytotrophoblast: Markers of disguise. Nature Med. 3, 610–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Zetter, B.R. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322, 605–612 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Rusciano, D. & Burger, M.M. Why do cancer cells metastasize into particular organs? Bioessays 14, 185–194 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Liotta, L., Rao, C.N. & Wewer, U.M. Biochemical interaction of tumor cells with the basement membrane. Ann. Rev. Biochem. 55, 1037–1057 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Lester, B.R. & McCarthy, J.B. Tumor cell adhesion to the extracellular matrix and signal transduction mechanisms implicated in tumor cell motility, invasion, and metastasis. Cancer Metastasis Rev. 11, 31–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Ruoslahti, E. Control of cell motility and tumor invasion by extracellular matrix interactions. Br. J. Cancer 66, 239–242 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montgomery, A.M.P., Reisfled, R.A. & Cheresh, D.A. Integrin αvβ3 rescues melanoma cells from apoptosis in three dimensional dermal collagen. Proc. Natl. Acad. Sci. USA 91, 8856–8860 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blasi, F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasion. Bioessays 15, 105–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Vu, T.-K., Hung, H.D.T., Wheaton V.I. & Coughlin, S.R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Rasmussen, V.B. et al. cDNA cloning and expression of a hamster α-thrombin receptor coupled to Ca+2 mobilization. FEBS Lett. 288, 123–128 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Gerszten, R.E. et al. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 368, 648–649 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91, 9208–9212 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nystedt, S., Emilsson, K., Larsson, A.-K., Strombeck, B. & Sundelin, J. Molecular cloning and functional expression of the gene coding for the human proteinase-activated receptor 2. Eur. J. Biochem. 232, 84–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Ishihara, H. et al. Protease-activated receptor-3 is a second thrombin receptor in humans. Nature 386, 502–506 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Strickland, S. & Richards, W.G. Invasion of trophoblasts. Cell 71, 355–357 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Cross, J.C., Werb, Z. & Fisher, S.Z. Implantation and the placenta: Key pieces of the development puzzle. Science 266, 1508–1518 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Damsky, H.C., Fitzgerald, M.L. & Fisher, S.J. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J. Clin Invest. 89, 210–222 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris, J.R. Placental endogenous retrovitus (ERV): Structural, functional and evolutionary significance. BioEssay 20, 307–316 (1998).

    Article  CAS  Google Scholar 

  19. Page, D.L. et al. Atypical hyperplastic lesions of the female breast: a long term follow-up study. Cancer 55, 2698–2708 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Page, D.L., Steel, C.M. & Dixon, J.M. Carcinoma in situ and patient at high risk of breast cancer. Br. Med. J. 310, 39–42 (1995).

    Article  CAS  Google Scholar 

  21. Silverstein, M.J. et al. Duct Carcinoma in situ: 227 cases without micro invasion. Eur. J. Cancer 28, 630–634 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Fisher, B. et al. Lumpectomy compared with lumpectomy and radiation therapy for the treatment of intraductal breast cancer. N. Engl. J. Med. 328, 1581–1586 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Page, D.L. et al. Continued local recurrence of carcinoma in situ 15–25 years after biopsy only for low grade ductal carcinoma in situ of the breast. Cancer 76, 1197–1200 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Albini, A. et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239–3245 (1987).

    CAS  PubMed  Google Scholar 

  25. Lee, K.S. et al. Sequential activation and production of matrix metalloproteinase-2 during breast cancer progression. Clin. Exp. Metastasis 14, 512–519 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, S.Y. et al. Sequential production and activation of matrix-metalloproteinase-9 (MMP-9) with breast cancer progression. Breast Cancer Res. Treat. 43, 175–181 (1997).

    Article  PubMed  Google Scholar 

  27. Walz, D.A. & Fenton II, J.W. The role of thrombin in tumor metastasis. Invasion Metastasis 14, 303–308 (1994).

    CAS  PubMed  Google Scholar 

  28. Nehls, V. & Herrmann, R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc. Res. 51, 347–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Esumi, N., Fan, D. & Fidler, I.J. Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res. 51, 4549–4556 (1991).

    CAS  PubMed  Google Scholar 

  30. Wojtukiewicz, M.Z. et al. Thrombin increases the metastatic potential of tumor cells. Int. J. Cancer 54, 793–806 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Wojtukiewicz, M.Z. et al. Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha II b beta 3 expression on the cell surface. Thromb. Res. 68, 233–245 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Wojtukiewicz, M.Z. et al. Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Res 55, 698–707 (1995).

    CAS  PubMed  Google Scholar 

  33. Pyke, C.E., Ralkiaer, E., Tryggvson, K. & Dano, K. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am. J. Pathol 142, 359–365 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pyke, C. et al. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am. J. Pathol. 138, 1059–1067 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sivaraman, V.S., Wang, H.-Y., Nuovo, G.J. & Malbon, C.C. Hyperexpression of Mitogen-activated Protein Kinase in Human Breast Cancer. J. Clin. Invest. 99, 1478–1483 (1977).

    Article  Google Scholar 

  36. Chen, Y.H. et al. She adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin-receptor. EMBO J. 15, 1037–1044 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duhamel-Clerin, E. et al. Thrombin receptor-mediated increase of two matrix metalloproteinases, MMP-1 and MMP-3, in human endothelial cells. Arterioscler. Thromb. Vase. Biol. 17, 1931–1938 (1997).

    Article  CAS  Google Scholar 

  38. Fernandez, P.L. et al. Immunohistochemical profile of basement membrane proteins and 72 kilodalton type IV collagenase in the implantation placental site. Lab. Invest. 66, 572–579 (1992).

    CAS  PubMed  Google Scholar 

  39. Shimonovitz, S. et al. Developmental regulation of the expression of 72 and 92 kd of type IV collagenases in human trophoblasts: A possible mechanism for control of trophoblast invasion. Am. J. Obstet. Cynecol. 171, 832–838 (1994).

    Article  CAS  Google Scholar 

  40. Giancotti, F.G. & Ruoslahti, E. Elevated levels of the α5β1 fibronectin receptor supresses transformed phenotype of Chinese hamster ovary cells. Cell 60, 849–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Soule, H.D. et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990).

    CAS  PubMed  Google Scholar 

  42. Miller, F.R. et al. Xenograft model of progressive human proliferative breast disease. J. Natl. Cancer Inst. 85, 1725–1732 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Feinberg, V. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem 132, 6–13 (1984).

    Article  Google Scholar 

  44. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239, 489–491 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Even-Ram, S., Uziely, B., Cohen, P. et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4, 909–914 (1998). https://doi.org/10.1038/nm0898-909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing