Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors

Abstract

Brain injury, as occurs in stroke or head trauma, induces a dramatic increase in levels of tumor necrosis factor–α (TNF), but its role in brain injury response is unknown. We generated mice genetically deficient in TNF receptors (TNFR–KO) to determine the role of TNF in brain cell injury responses. Damage to neurons caused by focal cerebral ischemia and epileptic seizures was exacerbated in TNFR–KO mice, indicating that TNF serves a neuroprotective function. Oxidative stress was Increased and levels of an antioxidant enzyme reduced in brain cells of TNFR–KO mice, indicating that TNF protects neurons by stimulating antioxidant pathways. Injury–induced microglial activation was suppressed in TNFR–KO mice, demonstrating a key role for TNF in injury–induced immune response. Drugs that target TNF signaling pathways may prove beneficial in treating stroke and traumatic brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taupin, V. et al. Increase in IL-6, IL-1 and TNF levells in rat brain following traumatic lesion. Influence of pre-and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J. Neuroimmunol. 42, 177–185 (1993).

    CAS  PubMed  Google Scholar 

  2. Minami, M., Kuraishi, Y. & Satoh, M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNFα and LIF in the rat brain. Biochem. Biophys. Res. Commun. 176, 593–598 (1991).

    CAS  PubMed  Google Scholar 

  3. Liu, T. et al. Tumor necrosis factor-α expression in ischemic neurons. Stroke 25, 1481–1488 (1994).

    CAS  PubMed  Google Scholar 

  4. Tracey, K.J. & Cerami, A. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Anna. Rev. Med. 5, 491–503 (1994).

    Google Scholar 

  5. van der Poll, T. & Lowry, S.F. Tumor necrosis factor in sepsis: Mediator of multiple organ failure or essential part of host defense? Shock 3, 1–12 (1995).

    CAS  PubMed  Google Scholar 

  6. Selmaj, W., Farooq, M., Norton, W.T., Raine, C.S. & Brosnan, C.F. Proliferation of astrocytes in vitro in response to cytokines: A primary role for tumor necrosis factor. J. Immunol. 144, 129–135 (1990).

    CAS  PubMed  Google Scholar 

  7. Merrill, J. Effects of interleukin-1 and tumor necrosis factor-α on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro . Dev. Neurosci. 13, 130–137 (1991).

    CAS  PubMed  Google Scholar 

  8. Lipton, S.A. HIV-related neuronal injury. Potential therapeutic intervention with calcium channel antagonists and NMDA antagonists. Mol. Neurobiol. 8, 181–196 (1994).

    CAS  PubMed  Google Scholar 

  9. Louis, J.C., Magal, E., Takayama, S. & Varon, S. CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259, 689–692 (1993).

    CAS  PubMed  Google Scholar 

  10. Chao, C.C. & Hu, S. Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev. Neurosci. 16, 172–179 (1994).

    CAS  PubMed  Google Scholar 

  11. Cheng, B., Christakos, S. & Mattson, M.P. Tumor necrosis factors protect neurons against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153 (1994).

    CAS  PubMed  Google Scholar 

  12. Gruss, H.J. & Dower, S.K. Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas. Blood 85, 3378–3404 (1995).

    CAS  PubMed  Google Scholar 

  13. Breder, C.D., Tsujimoto, M., Terano, Y., Scott, D.W. & Saper, C.B. Distribution and characterization of tumor necrosis factor-α-like immunoreactivity in the murine central nervous system. J. Comp. Neurol. 337, 543–567 (1993).

    CAS  PubMed  Google Scholar 

  14. Chung, I.Y. & Benveniste, E.N. Tumor necrosis factor alpha production by astrocytes. Induction by lipopolysaccharide, interferon gamma and interleukin-1 beta. J. Immunol. 144, 2999–3007 (1990).

    CAS  PubMed  Google Scholar 

  15. Armitage, R.J. Tumor necrosis factor receptor superfamily members and their ligands. Curr. Opin. Immunol. 6, 407–413 (1994).

    CAS  PubMed  Google Scholar 

  16. Beutler, B. & Van Huffel, C. An evolutionary and functional approach to the TNF receptor/ligand family. Ann. N.Y. Acad. Sci. 730, 118–133 (1994).

    CAS  PubMed  Google Scholar 

  17. Kinouchi, K. et al. Identification and characterization of receptors for tumor necrosis factor-α in the brain. Biochem. Bivphys. Res. Commun. 181, 1532–1538 (1991).

    CAS  Google Scholar 

  18. Wolvers, D.A., Marquette, C., Berkenbosch, F. & Haour, F. Tumor necrosis factor α: Specific binding sites in the rodent brain and pituitary gland. Eur. Cytokine Netw. 4, 377–381 (1993).

    CAS  PubMed  Google Scholar 

  19. Kolesnick, R. & Golde, D.W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77, 325–328 (1994).

    CAS  PubMed  Google Scholar 

  20. Rothe, M., Pan, M.-G., Henzel, W.J., Ayres, T.M. & Goeddel, D.V. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    CAS  PubMed  Google Scholar 

  21. Rothe, J. et al. Mice lacking tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes . Nature 364, 798–802 (1993).

    CAS  PubMed  Google Scholar 

  22. Erickson, S.L. et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372, 560–563 (1994).

    CAS  PubMed  Google Scholar 

  23. Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).

    CAS  PubMed  Google Scholar 

  24. Stein-Behrens, B., Mattson, M.P., Chang, I., Yeh, M. & Sapolsky, R.M. Stress excacerbates neuron loss and cytoskeletal pathology in the hippocampus. J. Neurosci. 14, 5373–5380 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, G. et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–170 (1994).

    PubMed  Google Scholar 

  26. Smith-Swintosky, V.L. et al. Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. J. Cerebr. Blood Flow Metab. 16, 585–598 (1996).

    CAS  Google Scholar 

  27. Watson, B.D. & Ginsberg, M.D. Ischemic injury in the brain. Role of oxygen radical-mediated processes. Ann. N.Y. Acad. Sci. 559, 269–281 (1989).

    CAS  PubMed  Google Scholar 

  28. Mattson, M.P., Lovell, M.A., Furukawa, K. & Markesbery, W.R. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of [Ca2+]i and neurotoxicity, and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751 (1995).

    CAS  PubMed  Google Scholar 

  29. Wong, G.H. Protective roles of cytokines against radiation: Induction of mitochondrial MnSOD. Biochim. Biophys. Acta 1271, 205–209 (1995).

    PubMed  Google Scholar 

  30. Barger, S.W. et al. TNFα and TNFβ protect hippocampal neurons against amyloid β-peptide toxicity: Evidence for involvement of a kB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jorgensen, M.B. et al. Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp. Neurol. 120, 70–88 (1993).

    CAS  PubMed  Google Scholar 

  32. Mattson, M.P., Cheng, B. & Smith-Swintosky, V.L. Growth factor-mediated protection from excitotoxicity and disturbances in calcium and free radical metabolism. Semin. Neurosci. 5, 295–307 (1993).

    CAS  Google Scholar 

  33. Eddy, L.J., Goeddel, D.V. & Wong, G.H. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 184, 1056–1059 (1992).

    CAS  PubMed  Google Scholar 

  34. LaVail, M.M. et al. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Natl. Proc. Acad. Sci. USA 89, 11249–11253 (1992).

    CAS  Google Scholar 

  35. Meda, L. et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374, 647–650 (1995).

    CAS  PubMed  Google Scholar 

  36. Peterson, P.K., Hu, S., Anderson, W.R. & Chao, C.C. Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J. Infect. Dis. 170, 457–460 (1994).

    CAS  PubMed  Google Scholar 

  37. Araujo, D.M. & Cotman, C.W. Basic FGF in astroglial, microglial, and neuronal cultures: Characterization of binding sites and modulation of release by lymphokines and trophic factors. J. Neurosci. 12, 1668–1678 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiessner, C., Gehrmann, J., Lindholm, D., Topper, R. & Kreutzberg, G.W. Hossmann, K.A. Expression of transforming growth factor-beta 1 and interleukin-1 beta mRNA in rat brain following transient forebrain ischemia. Acta Neuropathol. 86, 439–446 (1993).

    CAS  PubMed  Google Scholar 

  39. Warner, B.B., Burhans, M.S., Clark, J.C. & Wispe, J.R. Tumor necrosis factor-alpha increases Mn-SOD expression: Protection against oxidant injury. Am. J. Physiol. 260, L296–301 (1991).

    CAS  PubMed  Google Scholar 

  40. Barbara, J.A. et al. Dissociation of TNF-α cytotoxic and proinflammatory activities by p55 receptor-and p75 receptor-selective TNF-α mutants. EMBO J. 13, 843–850 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aloisi, F. et al. Astrocyte cultures from human embryonic brain: Characterization and modulation of surface molecules by inflammatory cytokines. J. Neurosci. Res. 32, 494–506 (1992).

    CAS  PubMed  Google Scholar 

  42. Panek, R.B. & Benveniste, E.N. Class II MHC gene expression in microglia. Regulation by the cytokines IFN-gamma, TNF-alpha, and TGF-beta. J. Immunol. 154, 2846–2854 (1995).

    CAS  PubMed  Google Scholar 

  43. Hopkins, S.J. & Rothwell, N.J. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci. 18, 83–88 (1995).

    CAS  PubMed  Google Scholar 

  44. Feuerstein, G.Z., Liu, T. & Barone, F.C., Cytokines, inflammation, and brain injury: Role of tumor necrosis factor-α. Cerebrovasc. Brain Metab. Rev. 6, 341–360 (1994).

    CAS  PubMed  Google Scholar 

  45. Lyden, P.D., Zivin, J.A., Chabolla, D.R., Jacobs, M.A. & Gage, F.H. Quantitative effects of cerebral infarction on spatial learning in rats. Exp. Neurol. 116, 122–132 (1992).

    CAS  PubMed  Google Scholar 

  46. Gayoso, M.J. et al. Brain lesions and water-maze learning deficits after systemic administration of kainic acid to adult rats. Brain Res. 653, 92–100 (1994).

    CAS  PubMed  Google Scholar 

  47. Bruce, A.J., Sakhi, S., Schreiber, S.S. & Baudry, M. Development of kainic acid and N-methyl-D-aspartic acid toxicity in organotypic hippocampal cultures. Exp. Neurol. 132, 209–219 (1995).

    CAS  PubMed  Google Scholar 

  48. White, B.C. et al. Fluorescent histochemical localization of lipid peroxidation during brain reperfusion following cardiac arrest. Acta. Neuropathol. 86, 1–9 (1993).

    CAS  PubMed  Google Scholar 

  49. Goodman, Y. & Mattson, M.P. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity. J. Neurochem. 66, 869–872 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruce, A., Boling, W., Kindy, M. et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2, 788–794 (1996). https://doi.org/10.1038/nm0796-788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0796-788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing