Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mast cells in the development of adaptive immune responses

Abstract

Mast cells are so widely recognized as critical effector cells in allergic disorders and other immunoglobulin E–associated acquired immune responses that it can be difficult to think of them in any other context. However, mast cells also can be important as initiators and effectors of innate immunity. In addition, mast cells that are activated during innate immune responses to pathogens, or in other contexts, can secrete products and have cellular functions with the potential to facilitate the development, amplify the magnitude or regulate the kinetics of adaptive immune responses. Thus, mast cells may influence the development, intensity and duration of adaptive immune responses that contribute to host defense, allergy and autoimmunity, rather than simply functioning as effector cells in these settings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mast cell knock-in mouse model for in vivo analyses of mast cell function.
Figure 2: Mechanisms by which mast cells may influence DCs, T cells and B cells.

References

  1. Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59–76 (1989).

    CAS  PubMed  Google Scholar 

  2. Metcalfe, D.D., Baram, D. & Mekori, Y.A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    CAS  PubMed  Google Scholar 

  3. Kawakami, T. & Galli, S.J. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2, 773–786 (2002).

    CAS  PubMed  Google Scholar 

  4. Galli, S.J., Zsebo, K.M. & Geissler, E.N. The kit ligand, stem cell factor. Adv. Immunol. 55, 1–96 (1994).

    CAS  PubMed  Google Scholar 

  5. Gonzalez-Espinosa, C. et al. Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J. Exp. Med. 197, 1453–1465 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Galli, S. et al. Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    CAS  PubMed  Google Scholar 

  7. Kinet, J.P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    CAS  PubMed  Google Scholar 

  8. Blank, U. & Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–273 (2004).

    CAS  PubMed  Google Scholar 

  9. Nakano, T. et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med. 162, 1025–1043 (1985).

    CAS  PubMed  Google Scholar 

  10. Tsai, M., Tam, S.Y., Wedemeyer, J. & Galli, S.J. Mast cells derived from embryonic stem cells: a model system for studying the effects of genetic manipulations on mast cell development, phenotype, and function in vitro and in vivo. Int. J. Hematol. 75, 345–349 (2002).

    CAS  PubMed  Google Scholar 

  11. Berrozpe, G. et al. The W(sh), W(57), and Ph Kit expression mutations define tissue-specific control elements located between -23 and -154 kb upstream of Kit. Blood 94, 2658–2666 (1999).

    CAS  PubMed  Google Scholar 

  12. Hayashi, S., Kunisada, T., Ogawa, M., Yamaguchi, K. & Nishikawa, S. Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucleic Acids Res. 19, 1267–1271 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nocka, K. et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 9, 1805–1813 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Reith, A.D. et al. W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor. Genes Dev. 4, 390–400 (1990).

    CAS  PubMed  Google Scholar 

  15. Yamazaki, M. et al. C-kit gene is expressed by skin mast cells in embryos but not in puppies of Wsh/Wsh mice: age-dependent abolishment of c-kit gene expression. Blood 83, 3509–3516 (1994).

    CAS  PubMed  Google Scholar 

  16. Grimbaldeston, M.A., Chen, C.-C., Tam, S.-Y., Tsai, M. & Galli, S.J. Mast cell deficient W-sash c-kit mutant KitW-sh//KitW-sh mice as a model for investigating mast cell biology in vivo. FASEB J. (in the press).

  17. Mallen-St Clair, J., Pham, C.T., Villalta, S.A., Caughey, G.H. & Wolters, P.J. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J. Clin. Invest. 113, 628–634 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens, J. & Loutit, J.F. Mast cells in spotted mutant mice (W Ph mi). Proc. R. Soc. Lond. B 215, 405–409 (1982).

    CAS  PubMed  Google Scholar 

  19. Duttlinger, R. et al. W-sash affects positive and negative elements controlling c-kit expression: ectopic c-kit expression at sites of kit-ligand expression affects melanogenesis. Development 118, 705–717 (1993).

    CAS  PubMed  Google Scholar 

  20. Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1 induced toxicity. Nature 432, 512–516 (2004).

    CAS  PubMed  Google Scholar 

  21. Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    CAS  PubMed  Google Scholar 

  22. King, C.L. et al. Mice with a targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni. J. Immunol. 158, 294–300 (1997).

    CAS  PubMed  Google Scholar 

  23. Strait, R.T., Morris, S.C., Yang, M., Qu, X.W. & Finkelman, F.D. Pathways of anaphylaxis in the mouse. J. Allergy Clin. Immunol. 109, 658–668 (2002).

    CAS  PubMed  Google Scholar 

  24. Williams, C.M. & Galli, S.J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi, T. et al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol. 164, 3855–3861 (2000).

    CAS  PubMed  Google Scholar 

  26. Woolhiser, M.R., Brockow, K. & Metcalfe, D.D. Activation of human mast cells by aggregated IgG through FcgammaRI: additive effects of C3a. Clin. Immunol. 110, 172–180 (2004).

    CAS  PubMed  Google Scholar 

  27. Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 4, 787–799 (2004).

    CAS  PubMed  Google Scholar 

  28. Galli, S.J., Tsai, M. & Chatterjea, D. in The Innate Immune Response to Infection (eds. Kaufman, S.H.E., Medzhitov, R. & Gordon, S.) 111–132 (ASM Press, Berlin, 2004).

    Google Scholar 

  29. Di Nardo, A., Vitiello, A. & Gallo, R.L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol. 170, 2274–2278 (2003).

    CAS  PubMed  Google Scholar 

  30. Malaviya, R. et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J. Immunol. 152, 1907–1914 (1994).

    CAS  PubMed  Google Scholar 

  31. Malaviya, R., Twesten, N.J., Ross, E.A., Abraham, S.N. & Pfeifer, J.D. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J. Immunol. 156, 1490–1496 (1996).

    CAS  PubMed  Google Scholar 

  32. Mekori, Y.A. & Metcalfe, D.D. Mast cell-T cell interactions. J. Allergy Clin. Immunol. 104, 517–523 (1999).

    CAS  PubMed  Google Scholar 

  33. Henz, B.M., Maurer, M., Lippert, U., Worm, M. & Babina, M. Mast cells as initiators of immunity and host defense. Exp. Dermatol. 10, 1–10 (2001).

    CAS  PubMed  Google Scholar 

  34. Frandji, P. et al. Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur. J. Immunol. 26, 2517–2528 (1996).

    CAS  PubMed  Google Scholar 

  35. Sayama, K. et al. Transcriptional response of human mast cells stimulated via the FcεRI and identification of mast cells as a source of IL-11. BMC Immunol. 3, 5 (2002).

    PubMed  PubMed Central  Google Scholar 

  36. Kashiwakura, J., Yokoi, H., Saito, H. & Okayama, Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol. 173, 5247–5257 (2004).

    CAS  PubMed  Google Scholar 

  37. Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001).

    CAS  PubMed  Google Scholar 

  38. Wang, H.W., Tedla, N., Lloyd, A.R., Wakefield, D. & McNeil, P.H. Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J. Clin. Invest. 102, 1617–1626 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinman, R.M. & Inaba, K. Myeloid dendritic cells. J. Leukoc. Biol. 66, 205–208 (1999).

    CAS  PubMed  Google Scholar 

  40. Cumberbatch, M., Dearman, R.J., Griffiths, C.E. & Kimber, I. Langerhans cell migration. Clin. Exp. Dermatol. 25, 413–418 (2000).

    CAS  PubMed  Google Scholar 

  41. Kaser, A. et al. A role for IL-16 in the cross-talk between dendritic cells and T cells. J. Immunol. 163, 3232–3238 (1999).

    CAS  PubMed  Google Scholar 

  42. Cumberbatch, M., Dearman, R.J., Antonopoulos, C., Groves, R.W. & Kimber, I. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-α- and IL-1β-dependent mechanism. Immunology 102, 323–330 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sozzani, S. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol. 155, 3292–3295 (1995).

    CAS  PubMed  Google Scholar 

  44. Yamazaki, S., Yokozeki, H., Satoh, T., Katayama, I. & Nishioka, K. TNF-alpha, RANTES, and MCP-1 are major chemoattractants of murine Langerhans cells to the regional lymph nodes. Exp. Dermatol. 7, 35–41 (1998).

    CAS  PubMed  Google Scholar 

  45. Carramolino, L. et al. Down-regulation of the beta-chemokine receptor CCR6 in dendritic cells mediated by TNF-α and IL-4. J. Leukoc. Biol. 66, 837–844 (1999).

    CAS  PubMed  Google Scholar 

  46. Robbiani, D.F. et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768 (2000).

    CAS  PubMed  Google Scholar 

  47. Kabashima, K. et al. Prostaglandin E2–EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat. Med. 9, 744–749 (2003).

    CAS  PubMed  Google Scholar 

  48. Ioffreda, M.D., Whitaker, D. & Murphy, G.F. Mast cell degranulation upregulates α6 integrins on epidermal Langerhans cells. J. Invest. Dermatol. 101, 150–154 (1993).

    CAS  PubMed  Google Scholar 

  49. Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170, 3037–3045 (2003).

    CAS  PubMed  Google Scholar 

  50. Caron, G. et al. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J. Immunol. 166, 6000–6006 (2001).

    CAS  PubMed  Google Scholar 

  51. Mazzoni, A., Young, H.A., Spitzer, J.H., Visintin, A. & Segal, D.M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 108, 1865–1873 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Caron, G. et al. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J. Immunol. 167, 3682–3686 (2001).

    CAS  PubMed  Google Scholar 

  53. Kalinski, P., Hilkens, C.M., Snijders, A., Snijdewint, F.G. & Kapsenberg, M.L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35 (1997).

    CAS  PubMed  Google Scholar 

  54. Faveeuw, C. et al. Prostaglandin D2 inhibits the production of interleukin-12 in murine dendritic cells through multiple signaling pathways. Eur. J. Immunol. 33, 889–898 (2003).

    CAS  PubMed  Google Scholar 

  55. Gosset, P. et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol. 170, 4943–4952 (2003).

    CAS  PubMed  Google Scholar 

  56. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    CAS  PubMed  Google Scholar 

  57. Ikeda, K. et al. Mast cells produce interleukin-25 upon FcεRI-mediated activation. Blood 101, 3594–3596 (2003).

    CAS  PubMed  Google Scholar 

  58. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    CAS  PubMed  Google Scholar 

  59. Bryce, P.J. et al. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20, 381–392 (2004).

    CAS  PubMed  Google Scholar 

  60. Jawdat, D.M., Albert, E.J., Rowden, G., Haidl, I.D. & Marshall, J.S. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol. 173, 5275–5282 (2004).

    CAS  PubMed  Google Scholar 

  61. Mekori, Y.A. The mastocyte: the “other” inflammatory cell in immunopathogenesis. J. Allergy Clin. Immunol. 114, 52–57 (2004).

    CAS  PubMed  Google Scholar 

  62. Nakajima, T. et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcεreceptor I cross-linking: an interspecies comparison. Blood 100, 3861–3868 (2002).

    CAS  PubMed  Google Scholar 

  63. Lin, T.J. et al. Selective early production of CCL20, or macrophage inflammatory protein 3α, by human mast cells in response to Pseudomonas aeruginosa. Infect. Immun. 71, 365–373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mori, Y. et al. Tyk2 is essential for IFN-α-induced gene expression in mast cells. Int. Arch. Allergy Immunol. 134, 25–29 (2004).

    CAS  PubMed  Google Scholar 

  65. Ott, V.L., Cambier, J.C., Kappler, J., Marrack, P. & Swanson, B.J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nat. Immunol. 4, 974–981 (2003).

    CAS  PubMed  Google Scholar 

  66. Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001).

    CAS  PubMed  Google Scholar 

  67. McLachlan, J.B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol. 4, 1199–1205 (2003).

    CAS  PubMed  Google Scholar 

  68. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    CAS  PubMed  Google Scholar 

  69. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    CAS  PubMed  Google Scholar 

  70. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    CAS  PubMed  Google Scholar 

  71. Pawankar, R., Okuda, M., Yssel, H., Okumura, K. & Ra, C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the FcεRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J. Clin. Invest. 99, 1492–1499 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol. 111, 136–143 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryzhov, S. et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J. Immunol. 172, 7726–7733 (2004).

    CAS  PubMed  Google Scholar 

  74. Yoshikawa, T., Imada, T., Nakakubo, H., Nakamura, N. & Naito, K. Rat mast cell protease-I enhances immunoglobulin E production by mouse B cells stimulated with interleukin-4. Immunology 104, 333–340 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Paul, W.E., Seder, R.A. & Plaut, M. Lymphokine and cytokine production by FcεRI+ cells. Adv. Immunol. 53, 1–29 (1993).

    CAS  PubMed  Google Scholar 

  76. Stassen, M. et al. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-κB is decisively involved in the expression of IL-9. J. Immunol. 166, 4391–4398 (2001).

    CAS  PubMed  Google Scholar 

  77. Villa, I. et al. Capacity of mouse mast cells to prime T cells and to induce specific antibody responses in vivo. Immunology 102, 165–172 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Williams, C.M.M. & Galli, S.J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847–859 (2000).

    CAS  PubMed  Google Scholar 

  79. Martin, T.R. et al. Mast cells contribute to the changes in heart rate, but not hypotension or death, associated with active anaphylaxis in mice. J. Immunol. 151, 367–376 (1993).

    CAS  PubMed  Google Scholar 

  80. Alenius, H. et al. Mast cells regulate IFN-γ expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J. Allergy Clin. Immunol. 109, 106–113 (2002).

    CAS  PubMed  Google Scholar 

  81. Ha, T.Y., Reed, N.D. & Crowle, P.K. Immune response potential of mast cell-deficient W/Wv mice. Int. Arch. Allergy Appl. Immunol. 80, 85–94 (1986).

    CAS  PubMed  Google Scholar 

  82. Martin, T.R., Galli, S.J., Katona, I.M. & Drazen, J.M. Role of mast cells in anaphylaxis. Evidence for the importance of mast cells in the cardiopulmonary alterations and death induced by anti-IgE in mice. J. Clin. Invest. 83, 1375–1383 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kung, T.T. et al. Mast cells modulate allergic pulmonary eosinophilia in mice. Am. J. Respir. Cell Mol. Biol. 12, 404–409 (1995).

    CAS  PubMed  Google Scholar 

  84. Takeda, K. et al. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J. Exp. Med. 186, 449–454 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Askenase, P.W. et al. Defective elicitation of delayed-type hypersensitivity in W/Wv and Sl/Sld mast cell-deficient mice. J. Immunol. 131, 2687–2694 (1983).

    CAS  PubMed  Google Scholar 

  86. Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 192, 1441–1452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Thomas, W.R. & Schrader, J.W. Delayed hypersensitivity in mast-cell-deficient mice. J. Immunol. 130, 2565–2567 (1983).

    CAS  PubMed  Google Scholar 

  88. Galli, S.J. & Hammel, I. Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science 226, 710–713 (1984).

    CAS  PubMed  Google Scholar 

  89. Wershil, B.K., Wang, Z.S., Gordon, J.R. & Galli, S.J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-alpha. J. Clin. Invest. 87, 446–453 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Furuta, G.T. et al. Mast cell-dependent tumor necrosis factor α production participates in allergic gastric inflammation in mice. Gastroenterology 113, 1560–1569 (1997).

    CAS  PubMed  Google Scholar 

  91. Secor, V.H., Secor, W.E., Gutekunst, C.A. & Brown, M.A. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Robbie-Ryan, M., Tanzola, M.B., Secor, V.H. & Brown, M.A. Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J. Immunol. 170, 1630–1634 (2003).

    CAS  PubMed  Google Scholar 

  93. Tanzola, M.B., Robbie-Ryan, M., Gutekunst, C.A. & Brown, M.A. Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J. Immunol. 171, 4385–4391 (2003).

    CAS  PubMed  Google Scholar 

  94. Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat. Immunol. 2, 216–222 (2001).

    CAS  PubMed  Google Scholar 

  95. Pedotti, R., De Voss, J.J., Steinman, L. & Galli, S.J. Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol. 24, 479–484 (2003).

    CAS  PubMed  Google Scholar 

  96. Lee, D.M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    CAS  PubMed  Google Scholar 

  97. Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Galli lab for discussions. Supported by US Public Health Service (AI-23990, CA-72074 and HL-67674 to S.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Galli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, S., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nat Immunol 6, 135–142 (2005). https://doi.org/10.1038/ni1158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing