Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population genetic structure of variable drug response

Abstract

Geographic patterns of genetic variation, including variation at drug metabolizing enzyme (DME) loci and drug targets, indicate that geographic structuring of inter-individual variation in drug response may occur frequently. This raises two questions: how to represent human population genetic structure in the evaluation of drug safety and efficacy, and how to relate this structure to drug response. We address these by (i) inferring the genetic structure present in a heterogeneous sample and (ii) comparing the distribution of DME variants across the inferred genetic clusters of individuals. We find that commonly used ethnic labels are both insufficient and inaccurate representations of the inferred genetic clusters, and that drug-metabolizing profiles, defined by the distribution of DME variants, differ significantly among the clusters. We note, however, that the complexity of human demographic history means that there is no obvious natural clustering scheme, nor an obvious appropriate degree of resolution. Our comparison of drug-metabolizing profiles across the inferred clusters establishes a framework for assessing the appropriate level of resolution in relating genetic structure to drug response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allele frequencies at each DME gene in the STRUCTURE-defined clusters.
Figure 2: Allele frequencies at each of the DME variants in the ethnically labeled groups.

Similar content being viewed by others

References

  1. Weber, W.W. Pharmacogenetics (Oxford University Press, Oxford, 1997).

    Google Scholar 

  2. Evans, W.E. & Relling, M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Gough, A.C. et al. Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 347, 773–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Kagimoto, M., Heim, M., Kagimoto, K., Zeugin, T. & Meyer, U.A. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J. Biol. Chem. 265, 17209–17214 (1990).

    CAS  PubMed  Google Scholar 

  5. Blum, M., Demierre, A., Grant, D.M., Heim, M. & Meyer, U.A. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc. Natl Acad. Sci. USA 88, 5237–5241 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernal, M.L. et al. Ten percent of North Spanish individuals carry duplicated or triplicated CYP2D6 genes associated with ultrarapid metabolism of debrisoquine. Pharmacogenetics 9, 657–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Meyer, U.A. & Zanger, U.M. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu. Rev. Pharmacol. Toxicol. 37, 269–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. International Conference on Harmonisation. Ethnic Factors in the Acceptability of Foreign Clinical Data. (International Conference on Harmonisation, 1998).

  9. Wilson, J.F. & Goldstein, D.B. Consistent long-range linkage disequilibrium generated by admixture in a Bantu–Semitic hybrid population. Am. J. Hum. Genet. 67, 926–935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Seielstad, M.T., Minch, E. & Cavalli-Sforza, L.L. Genetic evidence for a higher female migration rate in humans. Nature Genet. 20, 278–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Kohlmeier, L., DeMarini, D. & Piegorsch, W. Gene-nutrient interactions in nutritional epidemiology. in Design Concepts in Nutritional Epidemiology (eds. Margetts, B. & Nelson, M.) 312–337 (Oxford University Press, Oxford, 1997).

    Chapter  Google Scholar 

  13. Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995).

    Article  PubMed  Google Scholar 

  14. Krajinovic, M., Labuda, D., Richer, C., Karimi, S. & Sinnett, D. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 93, 1496–1501 (1999).

    CAS  PubMed  Google Scholar 

  15. Gaedigk, A. et al. NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics 8, 305–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein, J.A. & Blaisdell, J. Genetic tests which identify the principal defects in CYP2C19 responsible for the polymorphism in mephenytoin metabolism. Methods Enzymol. 272, 210–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Gaedigk, A. et al. Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data. Pharmacogenetics 9, 669–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Basile, V.S. et al. A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol. Psychiatry 5, 410–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Ferguson, R.J. et al. A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J. Pharmacol. Exp. Ther. 284, 356–361 (1998).

    CAS  PubMed  Google Scholar 

  20. Daly, A.K. et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 6, 193–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Sachse, C., Brockmoller, J., Bauer, S. & Roots, I. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 47, 445–449 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.B.G. is a Royal Society/Wolfson Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J., Weale, M., Smith, A. et al. Population genetic structure of variable drug response. Nat Genet 29, 265–269 (2001). https://doi.org/10.1038/ng761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing