Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The imprinted signaling protein XLαs is required for postnatal adaptation to feeding

Abstract

Genomic imprinting, by which maternal and paternal alleles of some genes have different levels of activity, has profound effects on growth and development of the mammalian fetus. The action of imprinted genes after birth, in particular while the infant is dependent on maternal provision of nutrients, is far less well understood. We disrupted a paternally expressed transcript at the Gnas locus, Gnasxl, which encodes the unusual Gsα isoform XLαs. Mice with mutations in Gnasxl have poor postnatal growth and survival and a spectrum of phenotypic effects that indicate that XLαs controls a number of key postnatal physiological adaptations, including suckling, blood glucose and energy homeostasis. Increased cAMP levels in brown adipose tissue of Gnasxl mutants and phenotypic comparison with Gnas mutants suggest that XLαs can antagonize Gsα-dependent signaling pathways. The opposing effects of maternally and paternally expressed products of the Gnas locus provide tangible molecular support for the parental-conflict hypothesis of imprinting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The imprinted mouse Gnas locus.
Figure 2: Generation of Gnasxl-deficient mice.
Figure 3: Growth and survival.
Figure 4: Food intake and plasma parameters of energy homeostasis.
Figure 5: Adipose tissue phenotype.
Figure 6: cAMP signaling in adipose tissues.
Figure 7: Postnatal expression pattern of Gnasxl.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cattanach, B.M. & Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496–498 (1985).

    Article  CAS  Google Scholar 

  2. Tycko, B. & Morison, I.M. Physiological functions of imprinted genes. J. Cell. Physiol. 192, 245–258 (2002).

    Article  CAS  Google Scholar 

  3. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    Article  CAS  Google Scholar 

  4. Yu, S. et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc. Natl. Acad. Sci. USA 95, 8715–8720 (1998).

    Article  CAS  Google Scholar 

  5. Skinner, J.A., Cattanach, B.M. & Peters, J. The imprinted oedematous-small mutation on mouse chromosome 2 identifies new roles for Gnas and Gnasxl in development. Genomics 80, 373–375 (2002).

    Article  CAS  Google Scholar 

  6. Cattanach, B.M., Peters, J., Ball, S. & Rasberry, C. Two imprinted gene mutations: three phenotypes. Hum. Mol. Genet. 9, 2263–2273 (2000).

    Article  CAS  Google Scholar 

  7. Yu, S. et al. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J. Clin. Invest. 105, 615–623 (2000).

    Article  CAS  Google Scholar 

  8. Davies, S.J. & Hughes, H.E. Imprinting in Albright's hereditary osteodystrophy. J. Med. Genet. 30, 101–103 (1993).

    Article  CAS  Google Scholar 

  9. Weinstein, L.S., Yu, S., Warner, D.R. & Liu, J. Endocrine Manifestations of Stimulatory G Protein alpha-Subunit Mutations and the Role of Genomic Imprinting. Endocr. Rev. 22, 675–705 (2001).

    CAS  PubMed  Google Scholar 

  10. Mantovani, G., Ballare, E., Giammona, E., Beck-Peccoz, P. & Spada, A. The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J. Clin. Endocrinol. Metab. 87, 4736–4740 (2002).

    Article  CAS  Google Scholar 

  11. Germain-Lee, E.L. et al. Paternal imprinting of Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochem. Biophys. Res. Commun. 296, 67–72 (2002).

    Article  CAS  Google Scholar 

  12. Hayward, B.E. et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J. Clin. Invest. 107, R31–R36 (2001).

    Article  CAS  Google Scholar 

  13. Kelsey, G. et al. Identification of imprinted loci by methylation-sensitive representational difference analysis: application to mouse distal chromosome 2. Genomics 62, 129–138 (1999).

    Article  CAS  Google Scholar 

  14. Peters, J. et al. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proc. Natl. Acad. Sci. USA 96, 3830–3835 (1999).

    Article  CAS  Google Scholar 

  15. Hayward, B.E. et al. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc. Natl. Acad. Sci. USA 95, 10038–10043 (1998).

    Article  CAS  Google Scholar 

  16. Hayward, B.E., Moran, V., Strain, L. & Bonthron, D.T. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc. Natl. Acad. Sci. USA 95, 15475–15480 (1998).

    Article  CAS  Google Scholar 

  17. Ischia, R. et al. Molecular cloning and characterization of NESP55, a novel chromogranin- like precursor of a peptide with 5-HT1B receptor antagonist activity. J. Biol. Chem. 272, 11657–11662 (1997).

    Article  CAS  Google Scholar 

  18. Kehlenbach, R.H., Matthey, J. & Huttner, W.B. XL alpha s is a new type of G protein. Nature 372, 804–809 (1994).

    Article  CAS  Google Scholar 

  19. Klemke, M. et al. Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J. Biol. Chem. 275, 33633–33640 (2000).

    Article  CAS  Google Scholar 

  20. Bastepe, M. et al. Receptor-mediated adenylyl cyclase activation through XLalpha(s), the extra-large variant of the stimulatory G protein alpha-subunit. Mol. Endocrinol. 16, 1912–1919 (2002).

    Article  CAS  Google Scholar 

  21. Coombes, C. et al. Epigenetic properties and identification of an imprint mark in the nesp-gnasxl domain of the mouse gnas imprinted locus. Mol. Cell. Biol. 23, 5475–5488 (2003).

    Article  CAS  Google Scholar 

  22. Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R. & Thomas, K.R. Targeting genes for self-excision in the germ line. Genes Dev. 13, 1524–1528 (1999).

    Article  CAS  Google Scholar 

  23. Storck, T., Kruth, U., Kolhekar, R., Sprengel, R. & Seeburg, P.H. Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. Nucleic Acids Res. 24, 4594–4596 (1996).

    Article  CAS  Google Scholar 

  24. Voss, A.K., Thomas, T. & Gruss, P. Germ line chimeras from female ES cells. Exp. Cell Res. 230, 45–49 (1997).

    Article  CAS  Google Scholar 

  25. Li, T. et al. Tissue-specific expression of antisense and sense transcripts at the imprinted Gnas locus. Genomics 69, 295–304 (2000).

    Article  CAS  Google Scholar 

  26. Pasolli, H.A., Klemke, M., Kehlenbach, R.H., Wang, Y. & Huttner, W.B. Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and subcellular localization. J. Biol. Chem. 275, 33622–33632 (2000).

    Article  CAS  Google Scholar 

  27. Vollmer, R.R., Balcita, J.J., Sved, A.F. & Edwards, D.J. Adrenal epinephrine and norepinephrine release to hypoglycemia measured by microdialysis in conscious rats. Am. J. Physiol. 273, R1758–R1763 (1997).

    CAS  PubMed  Google Scholar 

  28. Collins, S. & Surwit, R.S. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res. 56, 309–328 (2001).

    Article  CAS  Google Scholar 

  29. Bartness, T.J. & Bamshad, M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am. J. Physiol. 275, R1399–R1411 (1998).

    CAS  PubMed  Google Scholar 

  30. Zhou, Z. et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat. Genet. 35, 49–56 (2003).

    Article  Google Scholar 

  31. Crawford, J.A. et al. Neural expression of a novel alternatively spliced and polyadenylated Gs alpha transcript. J. Biol. Chem. 268, 9879–9885 (1993).

    CAS  PubMed  Google Scholar 

  32. Sutcliffe, J.G. & de Lecea, L. The hypocretins: setting the arousal threshold. Nat. Rev. Neurosci. 3, 339–349 (2002).

    Article  CAS  Google Scholar 

  33. Berridge, C.W. & Waterhouse, B.D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).

    Article  Google Scholar 

  34. Fay, R.A. & Norgren, R. Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus. II. Facial muscle motor systems. Brain Res. Brain Res. Rev. 25, 276–290 (1997).

    Article  CAS  Google Scholar 

  35. Lund, J.P., Kolta, A., Westberg, K.G. & Scott, G. Brainstem mechanisms underlying feeding behaviors. Curr. Opin. Neurobiol. 8, 718–724 (1998).

    Article  CAS  Google Scholar 

  36. Sawczuk, A. & Mosier, K.M. Neural control of tongue movement with respect to respiration and swallowing. Crit. Rev. Oral Biol. Med. 12, 18–37 (2001).

    Article  CAS  Google Scholar 

  37. Wilkins, J.F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4, 359–368 (2003).

    Article  CAS  Google Scholar 

  38. Hurst, L.D. Evolutionary theories of genomic imprinting. in Genomic Imprinting (eds. Reik, W. & Surani, A.) 211–237 (IRL, Oxford, 1997).

    Google Scholar 

  39. de la Casa-Esperon, E. & Sapienza, C. Natural selection and the evolution of genome imprinting. Annu. Rev. Genet. 37, 349–370 (2003).

    Article  CAS  Google Scholar 

  40. Blass, E.M. & Teicher, M.H. Suckling. Science 210, 15–22 (1980).

    Article  CAS  Google Scholar 

  41. Henning, S.J. Postnatal development: coordination of feeding, digestion, and metabolism. Am. J. Physiol. 241, G199–G214 (1981).

    CAS  PubMed  Google Scholar 

  42. Yu, S. et al. Increased insulin sensitivity in Gsalpha knockout mice. J. Biol. Chem. 276, 19994–19998 (2001).

    Article  CAS  Google Scholar 

  43. Ahren, B. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  CAS  Google Scholar 

  44. Young, J.B., Saville, E., Rothwell, N.J., Stock, M.J. & Landsberg, L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J. Clin. Invest. 69, 1061–1071 (1982).

    Article  CAS  Google Scholar 

  45. Freson, K. et al. Functional polymorphisms in the paternally expressed XLalphas and its cofactor ALEX decrease their mutual interaction and enhance receptor-mediated cAMP formation. Hum. Mol. Genet. 12, 1121–1130 (2003).

    Article  CAS  Google Scholar 

  46. Zheng, B. et al. RGS-PX1, a GAP for GalphaS and sorting nexin in vesicular trafficking. Science 294, 1939–1942 (2001).

    Article  CAS  Google Scholar 

  47. Klemke, M., Kehlenbach, R.H. & Huttner, W.B. Two overlapping reading frames in a single exon encode interacting proteins—a novel way of gene usage. EMBO J. 20, 3849–3860 (2001).

    Article  CAS  Google Scholar 

  48. Itier, J.M. et al. Imprinted gene in postnatal growth role. Nature 393, 125–126 (1998).

    Article  CAS  Google Scholar 

  49. Yang, T. et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat. Genet. 19, 25–31 (1998).

    Article  CAS  Google Scholar 

  50. Williamson, C.M. et al. Imprinting of distal mouse chromosome 2 is associated with phenotypic anomalies in utero. Genet. Res. 72, 255–265 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Reik, P. Hawkins and A. Vidal-Puig for their support and comments on the manuscript; E. Walters for statistical analysis of the data; T. Storck and K. Thomas for providing precursor plasmids for pRAY-Cre; A. Voss for the ES cell line MPI-VI; and the staff at Babraham animal facilities for dedicated husbandry. This work was supported by an Medical Research Council senior fellowship to G.K. and by the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Kelsey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The Gnasxl mutation does not alter the methylation state of the Gnasxl and Nesp DMRs in cis. (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plagge, A., Gordon, E., Dean, W. et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nat Genet 36, 818–826 (2004). https://doi.org/10.1038/ng1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing