Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MSH2 deficient mice are viable and susceptible to lymphoid tumours

Abstract

Alterations of the human MSH2 gene, a homologue of the bacterial MutS mismatch repair gene, co–segregate with the majority of hereditary non–polyposis colon cancer (HNPCC) cases. We have generated homozygous MSH2−/− mice. Surprisingly, these mice were found to be viable, produced offspring in a mendelian ratio and bred through at least two generations. Starting at two months of age homozygous −/− mice began, with high frequency, to develop lymphoid tumours that contained microsatellite instabilities. These data establish a direct link between MSH2 deficiency and the pathogenesis of cancer. These mutant mice should be good models to study the progression of tumours and also to screen carcinogenic and anti–cancer agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lynch, H.T. et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104, 1535–1549 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Ponz de Leon, M., Sassatelli, R., Benatti, P. & Roncucci, L. Identification of hereditary nonpolyposis colorectal cancer in the general population. The 6-year experience of a population-based registry. Cancer 71, 3493–3501 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Kee, F. & Collins, B.J. How prevalent is cancer family syndrome? Gut 32, 509–512 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cannon Albright, L.A., Skolnick, M.H., Bishop, D.T., Lee, R.G. & Burt, R.W. Common inheritance of susceptibility to colonic adenomatous polyps and associated colorectal cancers. New Engl. J. Med. 319, 533–537 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Bishop, D.T. & Thomas, H.J. The genetics of colorectal cancer. Cancer Surv. 9, 585–604 (1990).

    CAS  PubMed  Google Scholar 

  6. Peltomaki, P. et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 260, 810–812 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Lindblom, A., Tannergard, P., Werelius, B. & Nordenskjold, M. Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nature Genet. 5, 279–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Nystrom-Lahti, M. et al. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage. Am. J. hum. Genet. 55, 659–665 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Leach, F.S. et al. Mutations of a MutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Bronner, C.E. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368, 258–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Papadopoulos, N. et al. Mutation of a MutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Fishel, R. & Kolodner, R.D. Identification of mismatch repair genes and their role in development of cancer. Curr. Opin. Genet. Dev. 5, 382–395 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Nicolaides, N.C. et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371, 75–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Parsons, R., Longley, M., Kinzler, K.W. & Vogelstein, B. Mismatch repair deficiency in phenotypically normal human-cells. Science 268, 738–740 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Aaltonen, L.A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Levinson, G. & Gutman, G.A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucl. Acids Res. 15, 5323–5338 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Destabilization of tracts of simple repetitive DMA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Ionov, Y., Peinado, M.A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Thibodeau, S.N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Risinger, J.I. et al. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 53, 5100–5103 (1993).

    CAS  PubMed  Google Scholar 

  23. Young, J. et al. Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum. Mut. 2, 351–354 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Han, H.J., Yanagisawa, A., Kato, Y., Park, J.G. & Nakamura, Y. Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res. 53, 5087–5089 (1993).

    CAS  PubMed  Google Scholar 

  25. Peltomaki, P. et al. Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res. 53, 5853–5855 (1993).

    CAS  PubMed  Google Scholar 

  26. Gonzalez-Zulueta, M. et al. Microsatellite instability in bladder cancer. Cancer Res. 53, 5620–5623 (1993).

    CAS  PubMed  Google Scholar 

  27. Rhyu, M.G., Park, W.S. & Meltzer, S.J. Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene 9, 29–32 (1994).

    CAS  PubMed  Google Scholar 

  28. Wada, C. et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 83, 3449–3456 (1994).

    CAS  PubMed  Google Scholar 

  29. Shridhar, V., Siegfried, J., Hunt, J., del Mar Alonso, M. & Smith, D.I. Genetic instability of microsatellite sequences in many non-small cell lung carcinomas. Cancer Res. 54, 2084–2087 (1994).

    CAS  PubMed  Google Scholar 

  30. Merlo, A. et al. Frequent microsatellite instability in primary small cell lung cancer. Cancer Res. 54, 2098–2101 (1994).

    CAS  PubMed  Google Scholar 

  31. Wooster, R. et al. Instability of shorttandem repeats (microsatellites) in human cancers. Nature Genet. 6, 152–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Yee, C.J., Roodi, N., Verrier, C.S. & Parl, F.F. Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res. 54, 1641–1644 (1994).

    CAS  PubMed  Google Scholar 

  33. Burks, R.T., Kessis, T.D., Cho, K.R. & Hedrick, L. Microsatellite instability in endometrial carcinoma. Oncogene 9, 1163–1166 (1994).

    CAS  PubMed  Google Scholar 

  34. Schoenberg, M.P. et al. Microsatellite mutation (CAG24→18) in the androgen receptor gene in human prostate cancer. Biochem. Biophys. Res. Commun. 198, 74–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Honchel, R., Halling, K.C., Schaid, D.J., Pittelkow, M. & Thibodeau, S.N. Microsatellite instability in Muir-Torre syndrome. Cancer Res. 54, 1159–1163 (1994).

    CAS  PubMed  Google Scholar 

  36. Shibata, D., Peinado, M.A., Ionov, Y., Malkhosyan, S. & Perucho, M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet. 6, 273–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Aaltonen, L.A. et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54, 1645–1648 (1994).

    CAS  PubMed  Google Scholar 

  38. Fishel, R., Ewel, A., Lee, S., Lescoe, M.K. & Griffith, J. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266, 1403–1405 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Fishel, R., Ewel, A. & Lescoe, M.K. Purified human MSH2 protein binds to DNA containing mismatched nucleotides. Cancer Res. 54, 5539–5542 (1994).

    CAS  PubMed  Google Scholar 

  40. Kunkel, T.A. Nucleotide repeats. Slippery DNA and diseases. Nature 365, 207–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Drummond, J.T., Guo-Min, I., Longley, M.J. & Modrich, P. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268, 1909–1912 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Palombo, F. et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268, 1912–1914 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Papadopoulos, N. et al. Mutations of GTBP in genetically unstable cells. Science 268, 1915–1917 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Fishel, R.A., Siegel, E.C. & Kolodner, R. Gene conversion in Escherichia coli. Resolution of heteroallelic mismatched nucleotides by co-repair. J. molec. Biol. 188, 147–157 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Feinstein, S.I. & Low, K.B. Hyper-recombining recipient strains in bacterial conjugation. Genetics 113, 13–33 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, M., Wagner, R. & Radman, M. Mismatch repair and recombination in E. coli. Cell 50, 621–626 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Alani, E., Reenan, R.A. & Kolodner, R.D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137, 19–39 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rayssiguier, C., Thaler, D.S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396–401 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Selva, E.M., New, L. & Lahue, R.S. Mismatch correction acts as a barrier to homeologous recombination in saccharomyces-cerevisiae. Genetics 139, 1175–1188H1 Amge (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Loeb, L.A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  51. Baker, S.M. et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 302–319 (1995).

    Article  Google Scholar 

  52. Lynch, H.T. et al. Hereditary colorectal cancer. Semin. Oncol. 18, 337–366 (1991).

    CAS  PubMed  Google Scholar 

  53. Cohen, P.R. Muir-Torre syndrome in patients with hematologic malignancies. Am. J. Hemat. 40, 64–65 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Hamilton, S.R. et al. The molecular-basis of Turcots-syndrome. New Engl. J. Med. 332, 839–847 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Bhattacharyya, N.P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. natn. Acad. Sci. U.S.A. 91, 6319–6323 (1994).

    Article  CAS  Google Scholar 

  57. Croce, C.M. Role of chromosome translocations in human neoplasia. Cell 49, 155–156 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Teich, N., Wyke, J., Mak, T., Bernstein, A. & Hardy, W. Pathogenesis of Retrovirous Induced Disease in RNA tumor viruses. (eds Weiss, R., Teich, N., Varmus, H. & Coffin, J.) 785–998 (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1984).

    Google Scholar 

  59. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T., Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Fung Leung, W.P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65, 443–449 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Bradley, A., Evans, M., Kaufman, M.H., Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  CAS  PubMed  Google Scholar 

  62. Bradley, A. & Robertson, E. Embryo-derived stem cells: atool for elucidating the developmental genetics of the mouse. Curr. Top. Dev. Biol. 20, 357–371 (1986).

    Article  CAS  PubMed  Google Scholar 

  63. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L., Melton, D.W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning. (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitmair, A., Schmits, R., Ewel, A. et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet 11, 64–70 (1995). https://doi.org/10.1038/ng0995-64

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0995-64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing