Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity

Abstract

Mice homozygous for the fat mutation develop obesity and hyperglycaemia that can be suppressed by treatment with exogenous insulin. The fat mutation maps to mouse chromosome 8, very close to the gene for carboxypeptidase E (Cpe), which encodes an enzyme (CPE) that processes prohormone intermediates such as proinsulfn. We now demonstrate a defect in proinsulin processing associated with the virtual absence of CPE activity in extracts of fat/fat pancreatic islets and pituitaries. A single Ser202Pro mutation distinguishes the mutant Cpe allele, and abolishes enzymatic activity in vitro. Thus, the fat mutation represents the first demonstration of an obesity–diabetes syndrome elicited by a genetic defect in a prohormone processing pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leiter, E. Obesity genes and diabetes induction in the mouse. Crit. Rev. FoodSci. Nutr. 33, 333–338 (1993).

    Article  CAS  Google Scholar 

  2. Bray, G.A., Fisler, J. & York, D.A. Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front Obesity. 11, 128–181 (1990).

    Google Scholar 

  3. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy is correlated with methylation state and is influenced by parental lineage. Genes Devel. 8, 1463–1472. (1994).

    Article  CAS  Google Scholar 

  4. Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371, 799–802 (1994).

    Article  CAS  Google Scholar 

  5. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  6. Coleman, D.L. & Eicher, E.M. Fat (fat) and tubby (tub), two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered. 81, 424–427 (1990).

    Article  CAS  Google Scholar 

  7. Coleman, D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    Article  CAS  Google Scholar 

  8. Leiter, E. & Chapman, H. Obesity-induced diabetes (diabesity) in C57BL/ KsJ mice produces aberrant trans-regulation of sex steroid sulfotransferase genes. J. Clin. Invest. 93, 2007–2013 (1994).

    Article  CAS  Google Scholar 

  9. Leiter, E., Chapman, H. & Falany, C. Synergism of obesity genes with hepatic steroid sulfotransferases to mediate diabetes in mice. Diabetes 40, 1360–1363 (1991).

    Article  CAS  Google Scholar 

  10. Paigen, B.J. & Coleman, D.L. Linkage of fat to esterase-1. Mouse Genome 86, 240 (1990).

    Google Scholar 

  11. Fricker, L.D., in Peptide Biosynthesis and Processing (ed Fricker, L. D.) 199–228 (CRC Press, Boca Baton, 1991).

    Google Scholar 

  12. Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).

    Article  CAS  Google Scholar 

  13. Steiner, D.F., Smeekens, S.P., Ohagi, S. & Chan, S.J. The new enzymology of precursor processing endopeptidases. J. biol. Chem. 267, 23435–23438 (1992).

    CAS  PubMed  Google Scholar 

  14. Rhodes, C.J. & Alarcón, C. What β-cell defect could lead to hyperproinsulinemia in NIDDM?. Diabetes. 43, 511–517 (1994).

    Article  CAS  Google Scholar 

  15. Davidson, H.W. & Mutton, J.C. The insulin secretory granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem. J. 245, 575–582 (1987).

    Article  CAS  Google Scholar 

  16. Orci, L. et al. Direct identification of prohormone conversion site in insulin secreting cells. Cell 42, 671–681 (1985).

    Article  CAS  Google Scholar 

  17. Manser, E. et al. Human carboxypeptidase E: isolation and characterization of the cDNA, sequence conservation, expression, and processing in vitro. Biochem. J. 267, 517–525 (1990).

    Article  CAS  Google Scholar 

  18. Fricker, L.D. et al. Isolation and sequence analysis of a cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme. Molec. Endocrinol. 3, 666–673 (1989).

    Article  CAS  Google Scholar 

  19. Fricker, L.D., Evans, C.J., Each, F.S. & Herbert, E. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323, 461–464 (1986).

    Article  CAS  Google Scholar 

  20. Roth, W.W., Mackin, R.B., Spiess, J., Goodman, R.E. & Noe, B.D. Primary structure and tissue distribution of anglerfish carboxypeptidase E. Molec. cell. Endocrinol. 78, 171–178 (1991).

    Article  CAS  Google Scholar 

  21. Gidh-Jain, M. et al. Glucokinase mutation associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: Implications for structure/function relationships. Proc. Natl. Acad. Sci. USA 90, 1932–1936 (1993).

    Article  CAS  Google Scholar 

  22. Hager, M. et al. A missense mutation in the glycogen receptor gene is associated with non-insulin-dependent diabetes mellitus. Nature Genet. 9, 299–304 (1995).

    Article  CAS  Google Scholar 

  23. Leonetti, D.L., Prigeon, R.L., Boyko, E.J., Bergstrom, R.W. & Fujimoto, W.Y. Proinsulin as a marker for the development of NIDDM in Japanese-American men. Diabetes 44, 173–179 (1995).

    Article  Google Scholar 

  24. Porte, D.J. & Kahn, S.E. Hyperproinsulinemia and amyloid in NIDDM: clues to the etiology of beta cell dysfunction. Diabetes 38, 1333–1336 (1989).

    Article  CAS  Google Scholar 

  25. Porte, D. . β-cells in type II diabetes mellitus. Diabetes 40, 166–180 (1991).

    Article  Google Scholar 

  26. Steiner, D.F. et al. Lessons learned from molecular biology of insulin gene mutations. Diabetes Care 13, 600–609 (1990).

    Article  CAS  Google Scholar 

  27. Birkeland, K.I., Torjesen, P.A., Eriksson, J., Vaaler, S. & Groop, L. Hyperproinsulinemia of type II diabetes is not present before the development of hyperglycemia. Diabetes Care. 17, 1307–1310 (1994).

    Article  CAS  Google Scholar 

  28. Gadot, M. et al. Hyperproinsulinemia and insulin deficiency in the diabetic Psammomys obesus. Endocrinology. 135, 610–616 (1994).

    Article  CAS  Google Scholar 

  29. Poffenbarger, P.L., Chick, W.L., Lavine, R.L., Soeldner, J.S. & Flewelling, J.H. Insulin biosynthesis in experimental hereditary diabetes. Diabetes 20, 677–685 (1971).

    Article  CAS  Google Scholar 

  30. Flatt, P.R., Bailey, C.J., Hampton, S.M., Swanston-Flatt, S.K. & Marks, V., C-peptide in spontaneous syndromes of obesity and diabetes in mice. Norm. Metabol. Res. 19, 1–5 (1987).

    Article  CAS  Google Scholar 

  31. Ozcelik, T., Suedhof, T.C. & Francke, U. Chromosomal assignment of genes for vacuolar (endomembrane) proton pump subunits VPP1/Vpp-1 (116 KDa) and VPP3/Vpp-3 (58 kd) in human and mouse. Cytogen. Cell Genet. 58, 2008–2009 (1991).

    Google Scholar 

  32. Orci, L. et al. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle. J. Cell Biol. 126, 1149–1156 (1994).

    Article  CAS  Google Scholar 

  33. Jung, Y.-K., Kunczt, C.J., Pearson, R.K., Dixon, J.E. & Fricker, L.D. Structural characterization of the rat carboxypeptidase-E gene. Molec. Endocrinol. 5, 1257–1268 (1991).

    Article  CAS  Google Scholar 

  34. Stone, R.L. et al. A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nature Genet. 1, 59–63 (1992).

    Article  CAS  Google Scholar 

  35. Leiter, E.H. Type C retrovirus production by pancreatic beta cells. Association with accelerated pathogenesis in C3H-db/db (“diabetes”) mice. Am. J. Pathol 119, 22–32 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Prochazka, M., Serreze, D.V., Frankel, W.N. & Leiter, E.H. NOR/Lt; MHC-matched diabetes-resistant control strain for NOD mice. Diabetes 41, 98–106 (1992).

    Article  CAS  Google Scholar 

  37. Lander, E. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  Google Scholar 

  38. Manley, K. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome 4, 301–313 (1993).

    Article  Google Scholar 

  39. Tager, H.S., Rubenstein, A.H. & Steiner, D.F. in Methods in Enzymology (eds O'Malley, B. W. & Hardman, J.G.) 326–345 (Academic Press, New York, 1975).

    Google Scholar 

  40. Fricker, L.D. Methods for studying carboxypeptidase E. Meth. Neurosci. 23, 237–250 (1995).

    Article  CAS  Google Scholar 

  41. Fricker, L.D., Das, B. & Angeletti, R.H. Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3. 4.17.10). J. biol. Chem. 265, 2476–2482 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naggert, J., Fricker, L., Varlamov, O. et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10, 135–142 (1995). https://doi.org/10.1038/ng0695-135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing