Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity

A Correction to this article was published on 01 March 1998

Abstract

Many applications for human gene therapy would be facilitated by high levels and long duration of physiologic gene expression. Adenoviral vectors are frequently used for gene transfer because of their high cellular transduction efficiency in vitro and in vivo. Expression of viral proteins and the low capacity for foreign DNA limits the clinical application of first- and second-generation ade-noviral vectors1–7. Adenoviral vectors with all viral coding sequences deleted8–15 offer the prospect of decreased host immune responses to viral proteins, decreased cellular toxicity of viral proteins and increased capacity to accommodate large regulatory DNA regions. Currently most vectors used in vivo for preclinical and clinical studies express cDNAs under the control of heterologous eukaryotic or viral promoters. Using an adenoviral vector with all viral coding sequences deleted and containing the complete human α1-antitrypsin (PI) locus, we observed tissue-specific transcriptional regulation in cell culture and in vivo; intravenous injection in mice resulted in high levels of very stable expression for more than ten months and decreased acute and chronic toxicity. These results indicate significant advantages of regulated gene expression using genomic DNA for gene transfer and of adenoviral gene transfer vectors devoid of all viral coding sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stratford-Perricaudet, L.D., Levrero, M., Chasse, J.-F., Perricaudet, M. & Briand, P. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum. Gene Ther. 1, 241–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armentano, D. et al. Characterization of an adenovirus gene transfer vector containing an E4 deletion. Hum. Gene Ther. 6, 1343–1353 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Krougliak, V. & Graham, F.L. Development of cell lines capable of complementing E1, E4, and protein IX defective adenovirus type 5 mutants. Hum. Gene Ther. 6, 1575–1586 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q., Jia, X.-C. & Finer, M.H. A packaging cell line for propagation of recombinant adenovirus vectors containing two lethal gene-region deletions. Gene Ther. 2, 775–783 (1995).

    CAS  PubMed  Google Scholar 

  6. Zhou, H., O'Neal, W., Morral, N. & Beaudet, A.L. Development of a complementing cell line and a system for construction of adenoviral vectors deleted for E1 and E2a. J. Virol. 70, 7030–7038 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo, Z.S., Wang, L.-H., Eisensmith, R.C. & Woo, S.L.C. Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther. 3, 802–810 (1996).

    CAS  PubMed  Google Scholar 

  8. Mitani, K., Graham, F.L., Caskey, C.T. & Kochanek, S., S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc. Natl. Acad. Sci. USA 92, 3854–3858 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kochanek, S. et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase . Proc. Natl. Acad. Sci. U.S.A. 93, 5731–5736 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar-Singh, R. & Chamberlain, J.S. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Hum. Mol. Genet. 5, 913–921 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Fisher, K.J., Choi, H., Burda, J., Chen, S.-J. & Wilson, J.M. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 217, 11–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Clemens, P.R. et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther. 3, 965–972 (1996).

    CAS  PubMed  Google Scholar 

  13. Chen, H.-H. et al. Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc. Natl. Acad. Sci. USA 94, 1645–1650 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y. & Phipps, M.L. Construction of adenovirus vectors through Cre-lox recombination j. Virol. 71, 1842–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parks, R.J. et al. A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13565–13570 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dycaico, M.J. et al. Neonatal hepatitis induced by alpha 1-antitrypsin: A transgenic mouse model. Science 242, 1409–1412 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Edwards, A. et al. Automated DNA sequencing of the human HPRT locus. Genomics 6, 593–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Parks, R.J. & Graham, F.L. A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J. Virol. 71, 3293–3298 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Perlino, E., Cortese, R. & Ciliberto, G. The human α1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J. 6, 2767–2771 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hafeez Ciliberto, G. & Perlmutter, D.H. Constitutive and modulated expression of the human α1 antitrypsin gene. J. Clin. Invest. 89, 1214–1222 (1992).

    Article  PubMed  Google Scholar 

  21. Morral, N., O'Neal, W., Zhou, H., Langston, C. & Beaudet, A. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: Comparison of E2a wild type and E2a deleted vectors. Hum. Gene Ther. 8, 1275–1286 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Tripathy, S.K., Black, H.B., Goldwasser, E. & Leiden, J.M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nature Med. 2, 545–550 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, Y., Haecker, S.E., Su, Q. & Wilson, J.M. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum. Mol. Genet. 5, 1703–1712 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Kozarsky, K.F., Jooss, K., Donahee, M., Strauss, J.F. 3rd & Wilson, J.M. Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nature Genet. 13, 54–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Kay, M.A. et al. Hepatic gene therapy: persistent expression of human alpha-1-antitrypsin in mice after direct gene delivery in vivo. Hum. Gene Ther. 3, 641–647 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Kay, M.A., Graham, F., Leland, F. & Woo, S.L. Therapeutic serum concentrations of human α1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes. Hepatology 21, 815–819 (1995).

    CAS  PubMed  Google Scholar 

  27. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Sykes, R.C., Lin, D., Hwang, S.J., Framson, P.E. & Chinault, A.C. Yeast ARS function and nuclear matrix association coincide in a short sequence from the human HPRT locus. Mol. Gen. Genet. 212, 301–309 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Gerdes, J., Schwab, U., Lemke, H. & Stein, H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 31, 13–20 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Lieber, A., He, C.-Y., Kirillova, I. & Kay, M.A. Recombinant adenoviruses with large deletions generated by cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J. Virol. 70, 8944–8960 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kochanek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiedner, G., Morral, N., Parks, R. et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18, 180–183 (1998). https://doi.org/10.1038/ng0298-180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0298-180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing