Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: existing and emerging therapies for osteoporosis

Abstract

Osteoporosis is a major public health problem that is characterized by microarchitectural deterioration, low bone mass, and increased risk of fractures. Currently, many women and men affected with this disease are not diagnosed or treated. As osteoporosis is often clinically silent, risk-factor assessment and measurement of BMD are needed to identify those who may benefit from osteoporosis therapy. Although adequate daily intake of calcium and vitamin D, and regular weight-bearing exercise are important for skeletal health, they are not adequate treatments for individuals with osteoporosis. Therapies approved for treatment and/or prevention of osteoporosis in the United States include oral bisphosphonates (alendronate, ibandronate and risedronate), calcitonin, estrogens, teriparatide (parathyroid hormone fragment [1–34]), and raloxifene. For most patients, oral bisphosphonates are the treatment of choice, given the large-scale randomized-trial data demonstrating efficacy in fracture reduction, although bisphosphonates that reduce spine and nonspine fractures (e.g. alendronate and risedronate) are preferred. For high-risk patients (those with very low bone density, or with fractures), teriparatide therapy for 2 years should be considered. The treatment paradigm for osteoporosis will evolve further as promising new treatments progress through clinical development.

Key Points

  • Osteoporosis is a common disease in aging women and men, and it is a significant contributing factor to more than 1.5 million fractures of the spine, hip, and forearm each year in the United States

  • Initial therapy includes adequate calcium, vitamin D, and weight-bearing exercise; vitamin D insufficiency is common, and many investigators believe that the minimum 25-hydroxyvitamin D level necessary to reduce fracture risk clusters is in the range 70–80 nmol/l (28–32 ng/ml)

  • Although estrogen replacement therapy is effective in preventing fracture, it is no longer recommended for long-term treatment of osteoporosis

  • The oral bisphosphonates are the most widely used antiresorptive therapies for the treatment of osteoporosis: alendronate and risedronate decrease risk of vertebral and nonvertebral fractures, but the ideal duration of bisphosphonate use is uncertain

  • Parathyroid hormone administered intermittently improves skeletal microarchitecture, improves bone mass, and decreases vertebral and nonvertebral fractures

  • Several new and promising osteoporosis therapies are under investigation and the management of osteoporosis will continue to evolve as emerging therapies become available; osteoporosis therapy should be individualized, weighing fracture risk, therapy benefits, and side effects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volumetric bone density in postmenopausal women treated with parathyroid hormone (1–84), alendronate, or both

Similar content being viewed by others

References

  1. United States Surgeon General (2004) Surgeon General's Report on Osteoporosis and Bone Health for the American Society of Bone and Mineral Research, Part Two, Chapter 4 (The Frequency of Bone Disease) [http://www.surgeongeneral.gov/library/bonehealth/chapter_4.html] (accessed 10 July 2006)

  2. National Committee for Quality Assurance (2005) The State of Healthcare Quality 2005: Industry Trends and Analysis. National Committee for Quality Assurance Health Plan Employer Data and Information Set, page 48 [http://www.ncqa.org/] (accessed 10 July 2006)

  3. Holick MF et al. (2005) Prevalence of vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 90: 3215–3224

    Article  CAS  PubMed  Google Scholar 

  4. LeBoff MS et al. (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA 281: 1505–1511

    Article  CAS  PubMed  Google Scholar 

  5. Glowacki J et al. (2003) Osteoporosis and vitamin-D deficiency among postmenopausal women with osteoarthritis undergoing total hip arthroplasty. J Bone Joint Surg Am 85: 2371–2377

    Article  PubMed  Google Scholar 

  6. Thomas MK et al. (1998) Hypovitaminosis D in medical inpatients. N Engl J Med 338: 777–783

    Article  CAS  PubMed  Google Scholar 

  7. Chapuy MC et al. (1992) Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 327: 1637–1642

    Article  CAS  PubMed  Google Scholar 

  8. Dawson-Hughes B et al. (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337: 670–676

    Article  CAS  PubMed  Google Scholar 

  9. Trivedi DP et al. (2003) Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ 326: 469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaukat A et al. (2005) Role of supplemental calcium in the recurrence of colorectal adenomas: a metaanalysis of randomized controlled trials. Am J Gastroenterol 100: 390–394

    Article  CAS  PubMed  Google Scholar 

  11. Dawson-Hughes B et al. (2005) Estimates of optimal vitamin D status. Osteoporos Int 16: 713–716

    Article  CAS  PubMed  Google Scholar 

  12. Jackson RD et al. (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354: 669–683

    Article  CAS  PubMed  Google Scholar 

  13. Grant AM et al. (2005) Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet 365: 1621–1628

    Article  CAS  PubMed  Google Scholar 

  14. Heaney RP et al. (2003) Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 77: 204–210

    Article  CAS  PubMed  Google Scholar 

  15. Vieth R et al. (2004) Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 µg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutr J 3: 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Binkley N et al. (2004) Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J Clin Endocrinol Metab 89: 3152–3157

    Article  CAS  PubMed  Google Scholar 

  17. Institute of Medicine (1997) Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: The National Academies Press

  18. Manolagas SC and Jilka RL (1992) Cytokines, hematopoiesis, osteoclastogenesis, and estrogens. Calcif Tissue Int 50: 199–202

    Article  CAS  PubMed  Google Scholar 

  19. Pacifici R et al. (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc Natl Acad Sci USA 86: 2398–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rossouw JE et al. (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288: 321–333

    Article  CAS  PubMed  Google Scholar 

  21. Ettinger B et al. (2004) Effects of ultralow-dose transdermal estradiol on bone mineral density: a randomized clinical trial. Obstet Gynecol 104: 443–451

    Article  CAS  PubMed  Google Scholar 

  22. Bagger Y et al. (2004) Two to three years of hormone replacement treatment in healthy women have long-term preventive effects on bone mass and osteoporotic fractures: the PERF study. Bone 34: 728–735

    Article  CAS  PubMed  Google Scholar 

  23. Rogers MJ (2004) From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif Tissue Int 75: 451–461

    Article  CAS  PubMed  Google Scholar 

  24. Boivin GY et al. (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27: 687–694

    Article  CAS  PubMed  Google Scholar 

  25. Black DM et al. (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348: 1535–1541

    Article  CAS  PubMed  Google Scholar 

  26. Cummings SR et al. (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280: 2077–2082

    Article  CAS  PubMed  Google Scholar 

  27. Liberman UA et al. (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333: 1437–1443

    Article  CAS  PubMed  Google Scholar 

  28. Orwoll E et al. (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343: 604–610

    Article  CAS  PubMed  Google Scholar 

  29. Adachi JD et al. (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 44: 202–211

    Article  CAS  PubMed  Google Scholar 

  30. Hosking D et al. (1998) Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early Postmenopausal Intervention Cohort Study Group. N Engl J Med 338: 485–492

    Article  CAS  PubMed  Google Scholar 

  31. Rizzoli R et al. (2002) Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res 17: 1988–1996

    Article  CAS  PubMed  Google Scholar 

  32. Ott SM (2005) Long-term safety of bisphosphonates. J Clin Endocrinol Metab 90: 1897–1899

    Article  CAS  PubMed  Google Scholar 

  33. Bone HG et al. (2004) Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350: 1189–1199

    Article  CAS  PubMed  Google Scholar 

  34. Chavassieux PM et al. (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100: 1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Black D et al. (2004) A 5 year randomized trial of the long-term efficacy and safety of alendronate: The FIT Long-term EXtension (FLEX). J Bone Miner Res 19: S45

    Google Scholar 

  36. Ensrud KE et al. (2004) Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res 19: 1259–1269

    Article  CAS  PubMed  Google Scholar 

  37. Harris ST et al. (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 282: 1344–1352

    Article  CAS  PubMed  Google Scholar 

  38. McClung MR et al. (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344: 333–340

    Article  CAS  PubMed  Google Scholar 

  39. Reginster J et al. (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11: 83–91

    Article  CAS  PubMed  Google Scholar 

  40. Brown JP et al. (2002) The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int 71: 103–111

    Article  CAS  PubMed  Google Scholar 

  41. Mellstrom DD et al. (2004) Seven years of treatment with risedronate in women with postmenopausal osteoporosis. Calcif Tissue Int 75: 462–468

    Article  CAS  PubMed  Google Scholar 

  42. Cohen S et al. (1999) Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 42: 2309–2318

    Article  CAS  PubMed  Google Scholar 

  43. Rosen CJ et al. (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20: 141–151

    Article  CAS  PubMed  Google Scholar 

  44. Rosen CJ (2005) Clinical practice. Postmenopausal osteoporosis. N Engl J Med 353: 595–603

    Article  CAS  PubMed  Google Scholar 

  45. Chesnut CH III et al. (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19: 1241–1249

    Article  CAS  PubMed  Google Scholar 

  46. Vis M et al. (2005) The effect of intravenous pamidronate versus oral alendronate on bone mineral density in patients with osteoporosis. Osteoporos Int 16: 1432–1435

    Article  CAS  PubMed  Google Scholar 

  47. Reid IR et al. (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346: 653–661

    Article  CAS  PubMed  Google Scholar 

  48. Woo SB et al. (2006) Systematic review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144: 753–761

    Article  CAS  PubMed  Google Scholar 

  49. Neer RM et al. (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344: 1434–1441

    Article  CAS  PubMed  Google Scholar 

  50. Lindsay R et al. (1997) Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350: 550–555

    Article  CAS  PubMed  Google Scholar 

  51. Orwoll ES et al. (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18: 9–17

    Article  CAS  PubMed  Google Scholar 

  52. Kurland ES et al. (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85: 3069–3076

    CAS  PubMed  Google Scholar 

  53. Lane NE et al. (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102: 1627–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Body JJ et al. (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87: 4528–4535

    Article  CAS  PubMed  Google Scholar 

  55. Hodsman AB et al. (2003) Efficacy and safety of human parathyroid hormone-(1–84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab 88: 5212–5220

    Article  CAS  PubMed  Google Scholar 

  56. Cosman F et al. (2005) Daily and cyclic parathyroid hormone in women receiving alendronate. N Engl J Med 353: 566–575

    Article  CAS  PubMed  Google Scholar 

  57. Dempster DW et al. (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 16: 1846–1853

    Article  CAS  PubMed  Google Scholar 

  58. Jiang Y et al. (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18: 1932–1941

    Article  CAS  PubMed  Google Scholar 

  59. Zanchetta JR et al. (2003) Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18: 539–543

    Article  CAS  PubMed  Google Scholar 

  60. Horwitz MJ et al. (2003) Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 88: 569–575

    Article  CAS  PubMed  Google Scholar 

  61. Hodsman AB et al. (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26: 688–703

    Article  CAS  PubMed  Google Scholar 

  62. Vahle JL et al. (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol 30: 312–321

    Article  CAS  PubMed  Google Scholar 

  63. Ettinger B et al. (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282: 637–645

    Article  CAS  PubMed  Google Scholar 

  64. Delmas PD et al. (2002) Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab 87: 3609–3617

    Article  CAS  PubMed  Google Scholar 

  65. Siris ES et al. (2005) Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J Bone Miner Res 20: 1514–1524

    Article  CAS  PubMed  Google Scholar 

  66. Chesnut CH III et al. (2000) A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 109: 267–276

    Article  CAS  PubMed  Google Scholar 

  67. Tanko LB et al. (2004) Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res 19: 1531–1538

    Article  CAS  PubMed  Google Scholar 

  68. Black DM et al. (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349: 1207–1215

    Article  CAS  PubMed  Google Scholar 

  69. Finkelstein JS et al. (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349: 1216–1226

    Article  CAS  PubMed  Google Scholar 

  70. Deal C et al. (2005) Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J Bone Miner Res 20: 1905–1911

    Article  CAS  PubMed  Google Scholar 

  71. Rittmaster RS et al. (2000) Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab 85: 2129–2134

    CAS  PubMed  Google Scholar 

  72. Kurland ES et al. (2004) The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int 15: 992–997

    Article  CAS  PubMed  Google Scholar 

  73. Dahl SG et al. (2001) Incorporation and distribution of strontium in bone. Bone 28: 446–453

    Article  CAS  PubMed  Google Scholar 

  74. Canalis E et al. (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18: 517–523

    Article  CAS  PubMed  Google Scholar 

  75. Baron R and Tsouderos Y (2002) In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 450: 11–17

    Article  CAS  PubMed  Google Scholar 

  76. Marie PJ et al. (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8: 607–615

    Article  CAS  PubMed  Google Scholar 

  77. Nielsen SP et al. (1999) Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. J Clin Densitom 2: 371–379

    Article  CAS  PubMed  Google Scholar 

  78. Meunier PJ et al. (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350: 459–468

    Article  CAS  PubMed  Google Scholar 

  79. Reginster JY et al. (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90: 2816–2822

    Article  CAS  PubMed  Google Scholar 

  80. Bekker PJ et al. (2001) The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 16: 348–360

    Article  CAS  PubMed  Google Scholar 

  81. Cundy T et al. (2005) Recombinant osteoprotegerin for juvenile Paget's disease. N Engl J Med 353: 918–923

    Article  CAS  PubMed  Google Scholar 

  82. McClung M et al. (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354: 821–831

    Article  CAS  PubMed  Google Scholar 

  83. Arey BJ et al. (2005) A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion in vivo. Endocrinology 146: 2015–2022

    Article  CAS  PubMed  Google Scholar 

  84. Warmington K et al. (2005) Sclerostin monoclonal antibody treatment of osteoporotic rats completely reverses one year of ovariectomy-induced systemic bone loss. J Bone Miner Res 20 (Suppl 1): S22–1082

    Google Scholar 

  85. Murphy MG et al. (2005) Effect of L-000845704, an αVβ3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab 90: 2022–2028

    Article  CAS  PubMed  Google Scholar 

  86. Tavares FX et al. (2004) Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin K. J Med Chem 47: 588–599

    Article  CAS  PubMed  Google Scholar 

  87. Anderson GL et al. (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291: 1701–1712

    Article  CAS  PubMed  Google Scholar 

  88. Hulley SB and Grady D (2004) The WHI estrogen-alone trial—do things look any better? JAMA 291: 1769–1771

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean E Mulder.

Ethics declarations

Competing interests

MS LeBoff declared associations with the following companies: Amgen (stock ownership), Eli Lilly (research grant), Novartis (consultant, research grant), NPS Allelix (research grant), and Procter & Gamble (advisory board). The other authors declared they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, J., Kolatkar, N. & LeBoff, M. Drug Insight: existing and emerging therapies for osteoporosis. Nat Rev Endocrinol 2, 670–680 (2006). https://doi.org/10.1038/ncpendmet0325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing