Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prolyl cis-trans isomerization as a molecular timer

Abstract

Proline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs. The significance of enzyme-catalyzed prolyl cis-trans isomerization as an important regulatory mechanism in human physiology and pathology was not recognized until the discovery of the phosphorylation-specific prolyl isomerase Pin1. Recent studies indicate that both phosphorylation-dependent and phosphorylation-independent prolyl cis-trans isomerization can act as a novel molecular timer to help control the amplitude and duration of a cellular process, and prolyl cis-trans isomerization might be a new target for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prolyl cis-trans isomerization as a molecular switch.
Figure 2: Energy diagram for prolyl cis-trans isomerization.
Figure 3: Structural gallery of the four major classes of PPIases.
Figure 4: Phosphorylation-dependent prolyl cis-trans isomerization as a molecular timer in the Neu-Raf-Ras-MAPK signal pathway.
Figure 5: Phosphorylation-independent prolyl cis-trans isomerization as a molecular timer in cell signaling, ion channel gating and phage infection.
Figure 6: Phosphorylation-dependent prolyl cis-trans isomerization as a molecular timer in APP processing and Aβ production in Alzheimer's disease.

Similar content being viewed by others

References

  1. Yaffe, M.B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, X.Z., Lu, P.J., Wulf, G. & Lu, K.P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell. Mol. Life Sci. 56, 788–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Fischer, G. & Aumuller, T. Regulation of peptide bond cis/transisomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol. 148, 105–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Andreotti, A.H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wulf, G., Finn, G., Suizu, F. & Lu, K.P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell Biol. 7, 435–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson, L.K. & Lu, K.P. Prolyl cis-trans isomerization as a molecular timer in Crk signaling. Mol. Cell 25, 483–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Lu, K.P. & Zhou, X.Z. The prolyl isomerase Pin1: a pivotal new twist in phosphorylation signalling and human disease. Nat. Rev. Mol. Cell Biol. (in the press).

  8. Harding, M.W., Galat, A., Uehling, D.E. & Schreiber, S.L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F.X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476–478 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi, N., Hayano, T. & Suzuki, M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337, 473–475 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Siekierka, J.J., Hung, S.H., Poe, M., Lin, C.S. & Sigal, N.H. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341, 755–757 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Schreiber, S.L. & Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Heitman, J., Movva, N.R. & Hall, M.N. Proline isomerases at the crossroads of protein folding, signal transduction, and immunosuppression. New Biol. 4, 448–460 (1992).

    CAS  PubMed  Google Scholar 

  16. Hunter, T. Prolyl isomerase and nuclear function. Cell 92, 141–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Dolinski, K., Muir, S., Cardenas, M. & Heitman, J. All cyclophilins and FKBPs are dispensible for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 13093–13098 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shieh, B.H., Stamnes, M.A., Seavello, S., Harris, G.L. & Zuker, C.S. The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature 338, 67–70 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Tai, P.K., Albers, M.W., Chang, H., Faber, L.E. & Schreiber, S.L. Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science 256, 1315–1318 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Brillantes, A.B. et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, T. et al. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86, 435–444 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, K.P., Hanes, S.D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lu, K.P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci. 29, 200–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Butterfield, D.A. et al. Pin1 in Alzheimer's disease. J. Neurochem. 98, 1697–1706 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Maudsley, S. & Mattson, M.P. Protein twists and turns in Alzheimer disease. Nat. Med. 12, 392–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Yeh, E.S. & Means, A.R. Pin1, the cell cycle and cancer. Nat. Rev. Cancer 7, 381–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Eckert, B., Martin, A., Balbach, J. & Schmid, F.X. Prolyl isomerization as a molecular timer in phage infection. Nat. Struct. Mol. Biol. 12, 619–623 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Nelson, C.J., Santos-Rosa, H. & Kouzarides, T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126, 905–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Sarkar, P., Reichman, C., Saleh, T., Birge, R.B. & Kalodimos, C.G. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell 25, 413–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stewart, D.E., Sarkar, A. & Wampler, J.E. Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214, 253–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Pal, D. & Chakrabarti, P. Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J. Mol. Biol. 294, 271–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Pahlke, D., Leitner, D., Wiedemann, U. & Labudde, D. COPS–cis/trans peptide bond conformation prediction of amino acids on the basis of secondary structure information. Bioinformatics 21, 685–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Pahlke, D., Freund, C., Leitner, D. & Labudde, D. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence. BMC Struct. Biol. 5, 8 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kallen, J. et al. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature 353, 276–279 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Leulliot, N. et al. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol. Cell 23, 413–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Howard, B.R., Vajdos, F.F., Li, S., Sundquist, W.I. & Hill, C.P. Structural insights into the catalytic mechanism of cyclophilin A. Nat. Struct. Biol. 10, 475–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Eisenmesser, E.Z., Bosco, D.A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Trzesniak, D. & van Gunsteren, W.F. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data. Protein Sci. 15, 2544–2551 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Labeikovsky, W., Eisenmesser, E.Z., Bosco, D.A. & Kern, D. Structure and dynamics of Pin1 during catalysis by NMR. J. Mol. Biol. 367, 1370–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fanghanel, J. & Fischer, G. Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front. Biosci. 9, 3453–3478 (2004).

    Article  PubMed  Google Scholar 

  46. Fersht, A. Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis and Protein Folding (WH Freeman, New York, 1999).

    Google Scholar 

  47. Weiwad, M., Kullertz, G., Schutkowski, M. & Fischer, G. Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett. 478, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Brown, N.R., Noble, M.E., Endicott, J.A. & Johnson, L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, X.Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, P.J., Zhou, X.Z., Liou, Y.C., Noel, J.P. & Lu, K.P. Critical role of WW domain phosphorylation in regulating its phosphoserine-binding activity and the Pin1 function. J. Biol. Chem. 277, 2381–2384 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Jacobs, D.M. et al. Peptide binding induces large scale changes in inter-domain mobility in human Pin1. J. Biol. Chem. 278, 26174–26182 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Smet, C., Wieruszeski, J.M., Buee, L., Landrieu, I. & Lippens, G. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein. FEBS Lett. 579, 4159–4164 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Namanja, A.T. et al. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Structure 15, 313–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Peng, T., Zintsmaster, J.S., Namanja, A.T. & Peng, J.W. Sequence-specific dynamics modulate recognition specificity in WW domains. Nat. Struct. Mol. Biol. 14, 325–331 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Nurse, P. Cyclin dependent kinases and cell cycle control (Nobel lecture). ChemBioChem 3, 596–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Ubersax, J.A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Winkler, K.E., Swenson, K.I., Kornbluth, S. & Means, A.R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Stukenberg, P.T. & Kirschner, M.W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, M., Stukenberg, P.T., Kirschner, M.W. & Lu, K.P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crenshaw, D.G., Yang, J., Means, A.R. & Kornbluth, S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 17, 1315–1327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okamoto, K. & Sagata, N. Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. Proc. Natl. Acad. Sci. USA 104, 3753–3758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bernis, C. et al. Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCF(betatrcp). EMBO Rep. 8, 91–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, Y.X. & Manley, J.L. The prolyl isomerase Pin1 functions in mitotic chromosome condensation. Mol. Cell 26, 287–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Wulf, G.M. et al. Pin1 is overexpressed in breast cancer and potentiates the transcriptional activity of phosphorylated c-Jun towards the cyclin D1 gene. EMBO J. 20, 3459–3472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ryo, A., Nakamura, N., Wulf, G., Liou, Y.C. & Lu, K.P. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Ryo, A. et al. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Liou, Y.C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl. Acad. Sci. USA 99, 1335–1340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Suizu, F., Ryo, A., Wulf, G., Lim, J. & Lu, K.P. Pin1 regulates centrosome duplication and its overexpression induces centrosome amplification, chromosome instability and oncogenesis. Mol. Cell. Biol. 26, 1463–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ryo, A. et al. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281–5295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aghdasi, B. et al. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc. Natl. Acad. Sci. USA 98, 2425–2430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Monje, P., Hernandez-Losa, J., Lyons, R.J., Castellone, M.D. & Gutkind, J.S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase Pin1. J. Biol. Chem. 280, 35081–35084 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Wulf, G., Garg, P., Liou, Y.C., Iglehart, D. & Lu, K.P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moon, R.T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through beta-catenin. Science 296, 1644–1646 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Pang, R. et al. Pin1 overexpression and beta-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23, 4182–4186 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, S.Y. et al. Activation of beta-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-beta-catenin interaction. Mol. Cell. Biol. 26, 929–939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mallis, R.J., Brazin, K.N., Fulton, D.B. & Andreotti, A.H. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat. Struct. Biol. 9, 900–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Brazin, K.N., Mallis, R.J., Fulton, D.B. & Andreotti, A.H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 1899–1904 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Colgan, J. et al. Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. Immunity 21, 189–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pletneva, E.V., Sundd, M., Fulton, D.B. & Andreotti, A.H. Molecular details of Itk activation by prolyl isomerization and phospholigand binding: the NMR structure of the Itk SH2 domain bound to a phosphopeptide. J. Mol. Biol. 357, 550–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wulf, G.M., Liou, Y.C., Ryo, A., Lee, S.W. & Lu, K.P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Wu, X. et al. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 19, 3727–3738 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kops, O., Zhou, X.Z. & Lu, K.P. Pin1 enhances the dephosphorylation of the C-terminal domain of the RNA polymerase II by Fcp1. FEBS Lett. 513, 305–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P. & Manley, J.L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev. 17, 2765–2776 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leverson, J.D. & Ness, S.A. Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Mol. Cell 1, 203–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Shen, Z.J., Esnault, S. & Malter, J.S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. 6, 1280–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat. Immunol. 7, 598–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Esnault, S. et al. Pin1 modulates the type 1 immune response. PLoS ONE 2, e226 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yu, L. et al. Regulation of Bruton's tyrosine kinase (Btk) by the peptidyl-prolyl isomerase Pin1. J. Biol. Chem. 281, 18201–18207 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Obata, Y. et al. Role of cyclophilin B in activation of interferon regulatory factor-3. J. Biol. Chem. 280, 18355–18360 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Snyder, S.H., Lai, M.M. & Burnett, P.E. Immunophilins in the nervous system. Neuron 21, 283–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Baker, E.K., Colley, N.J. & Zuker, C.S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 13, 4886–4895 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xin, H.B. et al. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 416, 334–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Wehrens, X.H. et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113, 829–840 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, J.P. et al. The role of immunophilins in mutant superoxide dismutase-1linked familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 96, 3251–3256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Snyder, S.H. et al. Neural actions of immunophilin ligands. Trends Pharmacol. Sci. 19, 21–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Lester, H.A., Dibas, M.I., Dahan, D.S., Leite, J.F. & Dougherty, D.A. Cys-loop receptors: new twists and turns. Trends Neurosci. 27, 329–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Sansom, M.S. & Weinstein, H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol. Sci. 21, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Lu, K.P., Liou, Y.C. & Vincent, I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays 25, 174–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Yang, Y. & Herrup, K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim. Biophys. Acta 1772, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Suzuki, T. et al. Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO J. 13, 1114–1122 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, M.S. et al. APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83–95 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu, P.J., Wulf, G., Zhou, X.Z., Davies, P. & Lu, K.P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Thorpe, J.R. et al. Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol. Dis. 17, 237–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Hamdane, M. et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol. Cell. Neurosci. 32, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Sultana, R. et al. Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: a redox proteomics analysis. Neurobiol. Aging 27, 918–925 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Segat, L. et al. Pin1 promoter polymorphisms are associated with Alzheimer's disease. Neurobiol. Aging 28, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Nowotny, P. et al. Association studies between common variants in prolyl isomerase Pin1 and the risk for late-onset Alzheimer's disease. Neurosci. Lett. 419, 15–17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ramelot, T.A. & Nicholson, L.K. Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440, 528–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Akiyama, H., Shin, R.W., Uchida, C., Kitamoto, T. & Uchida, T. Pin1 promotes production of Alzheimer's amyloid beta from beta-cleaved amyloid precursor protein. Biochem. Biophys. Res. Commun. 336, 521–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Wong, P.C., Cai, H., Borchelt, D.R. & Price, D.L. Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci. 5, 633–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Geschwind, D.H. Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg. Neuron 40, 457–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Zita, M.M. et al. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J. 26, 1761–1771 (2007).

    Article  PubMed  CAS  Google Scholar 

  123. Li, Q.M. et al. Activation of JNK3 after injury induces cytochrome C release by facilitating Pin1-dependent degradation of Mcl-1. J. Neurosci. 27, 8395–8404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Braaten, D., Franke, E.K. & Luban, J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J. Virol. 70, 3551–3560 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Towers, G.J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med. 9, 1138–1143 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Martin, A. & Schmid, F.X. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins. J. Mol. Biol. 328, 863–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Corey, R.B. & Pauling, L. Fundamental dimensions of polypeptide chains. Proc. R. Soc. Lond. B 141, 10–20 (1953).

    Article  CAS  PubMed  Google Scholar 

  128. Edison, A.S. Linus Pauling and the planar peptide bond. Nat. Struct. Biol. 8, 201–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Christoph, C. & Wuthrich, K. NMR studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20, 2623–2633 (1981).

    Article  Google Scholar 

  130. Kofron, J.L., Kuzmic, P., Kishore, V., Colon-Bonilla, E. & Rich, D.H. Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 30, 6127–6134 (1991).

    Article  CAS  PubMed  Google Scholar 

  131. Park, S.T., Aldape, R.A., Futer, O., DeCenzo, M.T. & Livingston, D.J. PPIase catalysis by human FK506-binding protein proceeds through a conformational twist mechanism. J. Biol. Chem. 267, 3316–3324 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Eberhardt, E.S., Loh, S.N., Hinck, A.P. & Raines, R.T. Solvent effects on the energetics of prolyl peptide bond isomerization. J. Am. Chem. Soc. 114, 5437–5439 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Scheiner, S. & Kern, C.W. Theoretical studies of environmental effects on protein conformation. 1. Flexibility of the peptide bond. J. Am. Chem. Soc. 99, 7042–7050 (1977).

    Article  CAS  PubMed  Google Scholar 

  134. Kramer, M.L. & Fischer, G. FKBP-like catalysis of peptidyl-prolyl bond isomerization by micelles and membranes. Biopolymers 42, 49–60 (1997).

    Article  CAS  Google Scholar 

  135. Ma, L., Hsieh-Wilson, L.C. & Schultz, P.G. Antibody catalysis of peptidyl-prolyl cis-trans isomerization in the folding of RNase T1. Proc. Natl. Acad. Sci. USA 95, 7251–7256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yli-Kauhaluoma, J.T. et al. Catalytic antibodies with peptidyl-prolyl cis-trans isomerase activity. J. Am. Chem. Soc. 118, 5496–5497 (1996).

    Article  CAS  Google Scholar 

  137. Fischer, S., Michnick, S. & Karplus, M. A mechanism for rotamase catalysis by the FK506 binding protein (FKBP). Biochemistry 32, 13830–13837 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Lu and Nicholson laboratories for stimulating discussions. Work done in the authors' laboratories is supported by US National Science Foundation grant MCB-0641582 and US National Institutes of Health grant AG029385 to L.K.N. and by US National Institutes of Health grants GM58556, AG17870, AG22082 and AG029385 to K.P.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Ping Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, K., Finn, G., Lee, T. et al. Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3, 619–629 (2007). https://doi.org/10.1038/nchembio.2007.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing