Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo

Abstract

Hyperphosphorylated forms of the microtubule-associated protein (MAP) tau accumulate in Alzheimer's disease and related tauopathies and are thought to have an important role in neurodegeneration. However, the mechanisms through which phosphorylated tau induces neurodegeneration have remained elusive. Here, we show that tau-induced neurodegeneration is associated with accumulation of filamentous actin (F-actin) and the formation of actin-rich rods in Drosophila and mouse models of tauopathy. Importantly, modulating F-actin levels genetically leads to dramatic modification of tau-induced neurodegeneration. The ability of tau to interact with F-actin in vivo and in vitro provides a molecular mechanism for the observed phenotypes. Finally, we show that the Alzheimer's disease-linked human β-amyloid protein (Aβ) synergistically enhances the ability of wild-type tau to promote alterations in the actin cytoskeleton and neurodegeneration. These findings raise the possibility that a direct interaction between tau and actin may be a critical mediator of tau-induced neurotoxicity in Alzheimer's disease and related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between tau and the actin cytoskeleton induces abnormal F-actin bundling and accumulation.
Figure 2: Actin-rich rod formation accompanies neurodegeneration in the brains of tau transgenic flies and mice.
Figure 3: Changes in F-actin modulate neurotoxicity in the retina of tau transgenic flies.
Figure 4: F-actin accumulation and actin-rich rod formation correlate with the degree of tau-induced neuronal degeneration.
Figure 5: Changes in the actin cytoskeleton occur downstream of tau phosphorylation.
Figure 6: Aβ and tau interact in a synergistic manner to promote actin-rich rod formation and neuronal degeneration.

Similar content being viewed by others

References

  1. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. & Hof, P. R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 33, 95–130 (2000).

    Article  CAS  Google Scholar 

  2. Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  Google Scholar 

  3. Cross, D., Vial, C. & Maccioni, R. B. A tau-like protein interacts with stress fibers and microtubules in human and rodent cultured cell lines. J. Cell Sci. 105, 51–60 (1993).

    CAS  PubMed  Google Scholar 

  4. DiTella, M., Feiguin, F., Morfini, G. & Caceres, A. Microfilament-associated growth cone component depends upon Tau for its intracellular localization. Cell Motil. Cytoskeleton 29, 117–130 (1994).

    Article  CAS  Google Scholar 

  5. Henriquez, J. P., Cross, D., Vial, C. & Maccioni, R. B. Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem. Funct. 13, 239–250 (1995).

    Article  CAS  Google Scholar 

  6. Kempf, M., Clement, A., Faissner, A., Lee, G. & Brandt, R. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J. Neurosci. 16, 5583–5592 (1996).

    Article  CAS  Google Scholar 

  7. Cunningham, C. C. et al. Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line. J. Cell Biol. 136, 845–857 (1997).

    Article  CAS  Google Scholar 

  8. Zmuda, J. F. & Rivas, R. J. Actin disruption alters the localization of tau in the growth cones of cerebellar granule neurons. J. Cell Sci. 113, 2797–2809 (2000).

    CAS  PubMed  Google Scholar 

  9. Griffith, L. M. & Pollard, T. D. The interaction of actin filaments with microtubules and microtubule-associated proteins. J. Biol. Chem. 257, 9143–9151 (1982).

    CAS  PubMed  Google Scholar 

  10. Correas, I., Padilla, R. & Avila, J. The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Biochem J. 269, 61–64 (1990).

    Article  CAS  Google Scholar 

  11. Moraga, D. M., Nunez, P., Garrido, J. & Maccioni, R. B. A tau fragment containing a repetitive sequence induces bundling of actin filaments. J. Neurochem. 61, 979–986 (1993).

    Article  CAS  Google Scholar 

  12. Farias, G. A., Munoz, J. P., Garrido, J. & Maccioni, R. B. Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies. J. Cell Biochem. 85, 315–324 (2002).

    Article  CAS  Google Scholar 

  13. Roger, B., Al-Bassam, J., Dehmelt, L., Milligan, R. A. & Halpain, S. MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr. Biol. 14, 363–371 (2004).

    Article  CAS  Google Scholar 

  14. Schochet, S. S. Jr., Lampert, P. W. & Lindenberg, R. Fine structure of the Pick and Hirano bodies in a case of Pick's disease. Acta. Neuropathol. 11, 330–337 (1968).

    Article  Google Scholar 

  15. Goldman, J. E. The association of actin with Hirano bodies. J. Neuropathol. Exp. Neurol. 42, 146–152 (1983).

    Article  CAS  Google Scholar 

  16. Galloway, P. G., Perry, G. & Gambetti, P. Hirano body filaments contain actin and actin-associated proteins. J. Neuropathol. Exp. Neurol. 46, 185–199 (1987).

    Article  CAS  Google Scholar 

  17. Hirano, A. Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol. 20, 3–11 (1994).

    Article  CAS  Google Scholar 

  18. Gourlay, C. W., Carpp, L. N., Timpson, P., Winder, S. J. & Ayscough, K. R. A role for the actin cytoskeleton in cell death and aging in yeast. J. Cell Biol. 164, 803–809 (2004).

    Article  CAS  Google Scholar 

  19. Ohtsu, M. et al. Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J. 16, 4650–4656 (1997).

    Article  CAS  Google Scholar 

  20. Koya, R. C. et al. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J. Biol. Chem. 275, 15343–15349 (2000).

    Article  CAS  Google Scholar 

  21. Chua, B. T. et al. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nature Cell Biol. 5, 1083–1089 (2003).

    Article  CAS  Google Scholar 

  22. Wittmann, C. W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001).

    Article  CAS  Google Scholar 

  23. Jackson, G. R. et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34, 509–519 (2002).

    Article  CAS  Google Scholar 

  24. Muqit, M. M. & Feany, M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nature Rev. Neurosci. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  25. Nishimura, I., Yang, Y. & Lu, B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116, 671–682 (2004).

    Article  CAS  Google Scholar 

  26. Karsten, S. L. et al. A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51, 549–560 (2006).

    Article  CAS  Google Scholar 

  27. Andorfer, C. et al. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem. 86, 582–590 (2003).

    Article  CAS  Google Scholar 

  28. Andorfer, C. et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci. 25, 5446–5454 (2005).

    Article  CAS  Google Scholar 

  29. Ramsden, M. et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J. Neurosci. 25, 10637–10647 (2005).

    Article  CAS  Google Scholar 

  30. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  Google Scholar 

  31. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997).

    Article  CAS  Google Scholar 

  32. Galloway, P. G., Perry, G., Kosik, K. S. & Gambetti, P. Hirano bodies contain tau protein. Brain Res. 403, 337–340 (1987).

    Article  CAS  Google Scholar 

  33. Maciver, S. K. & Harrington, C. R. Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 6, 1985–1988 (1995).

    Article  CAS  Google Scholar 

  34. Spires, T. L. et al. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am. J. Pathol. 168, 1598–1607 (2006).

    Article  CAS  Google Scholar 

  35. Shulman, J. M. & Feany, M. B. Genetic modifiers of tauopathy in Drosophila. Genetics 165, 1233–1242 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Khurana, V. et al. TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol. 16, 230–241 (2006).

    Article  CAS  Google Scholar 

  37. Wagner, C. R., Mahowald, A. P. & Miller, K. G. One of the two cytoplasmic actin isoforms in Drosophila is essential. Proc. Natl Acad. Sci. USA 99, 8037–8042 (2002).

    Article  CAS  Google Scholar 

  38. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  39. Gotz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495 (2001).

    Article  CAS  Google Scholar 

  40. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  Google Scholar 

  41. Finelli, A., Kelkar, A., Song, H. J., Yang, H. & Konsolaki, M. A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster. Mol. Cell. Neurosci. 26, 365–375 (2004).

    Article  CAS  Google Scholar 

  42. Ghosh, S. & Feany, M. B. Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum. Mol. Genet. 13, 2011–2018 (2004).

    Article  CAS  Google Scholar 

  43. Warrick, J. M. et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949 (1998).

    Article  CAS  Google Scholar 

  44. Harms, C. et al. Neuronal gelsolin prevents apoptosis by enhancing actin depolymerization. Mol. Cell Neurosci. 25, 69–82 (2004).

    Article  CAS  Google Scholar 

  45. Zhu, X. et al. Oxidative stress signalling in Alzheimer's disease. Brain Res. 1000, 32–39 (2004).

    Article  CAS  Google Scholar 

  46. Rodriguez, O. C. et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    Article  CAS  Google Scholar 

  47. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate Alzheimer's diseaseF/cofilin. Cell 108, 233–246 (2002).

    Article  CAS  Google Scholar 

  48. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  49. Dias-Santagata, D., Fulga, T. A., Duttaroy, A. & Feany, M. B. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J. Clin. Invest. 117, 236–245 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to those who generously sent us stocks and reagents (see Methods). Fly injection services were provided by D. Rennie at the Cutaneous Biology Research Center at Massachusetts General Hospital. We thank R. Stearns for help with the SEM facility. The rTg4510 mice were provided by G. Carlson and K. Hsiao Ashe. This work was supported by National Institutes of Health (NIH) grants AG19790 and AG5134 and a McKnight Foundation grant to M.B.F. T.A.F is the recipient of a postdoctoral fellowship from The John Douglas French Alzheimer's Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.A.F., I.E.-S., V.K. and M.B.F. contributed to study design, data acquisition and manuscript preparation. M.L.S., T.L.S. and B.T.H. contributed critical reagents and assisted with data analysis.

Corresponding authors

Correspondence to Tudor A. Fulga or Mel B. Feany.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulga, T., Elson-Schwab, I., Khurana, V. et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9, 139–148 (2007). https://doi.org/10.1038/ncb1528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing