Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase

Abstract

Chemotherapy that is used to treat human immunodeficiency virus type-1 (HIV-1) infection focuses primarily on targeting virally encoded proteins. However, the combination of a short retroviral life cycle and high mutation rate leads to the selection of drug-resistant HIV-1 variants. One way to address this problem is to inhibit non-essential host cell proteins that are required for viral replication. Here we show that the activity of HIV-1 integrase stimulates an ataxia-telangiectasia-mutated (ATM)-dependent DNA damage response, and that a deficiency of this ATM kinase sensitizes cells to retrovirus-induced cell death. Consistent with these observations, we demonstrate that a novel and specific small molecule inhibitor of ATM kinase activity, KU-55933, is capable of suppressing the replication of both wild-type and drug-resistant HIV-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATM function is required for efficient HIV-1 infection.
Figure 2: Functional HIV-1 integrase is required to elicit an ATM-dependent DNA damage response.
Figure 3: ATM-deficient cells show enhanced cell death when transduced with recombinant HIV-1 IN+ vectors.
Figure 4: Suppression of HIV-1 vector transduction by KU-55933.
Figure 5: Effect of KU-55933 on HIV-1 cDNA intermediate formation and integration.
Figure 6: Inhibition of HIV-1 replication by KU-55933.

Similar content being viewed by others

References

  1. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    Article  CAS  Google Scholar 

  2. Brown, P. O. in Retroviruses (eds Coffin, J. M., Hughes, S. H. & Varmus, H. E.) 161–203 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1997).

    Google Scholar 

  3. Daniel, R., Katz, R. A. & Skalka, A. M. A role for DNA-PK in retroviral DNA integration. Science 284, 644–647 (1999).

    Article  CAS  Google Scholar 

  4. Li, L. et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281 (2001).

    Article  CAS  Google Scholar 

  5. Jeanson, L. et al. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology 300, 100–108 (2002).

    Article  CAS  Google Scholar 

  6. Kilzer, J. M. et al. Roles of host cell factors in circularization of retroviral DNA. Virology 314, 460–467 (2003).

    Article  CAS  Google Scholar 

  7. Daniel, R. et al. Wortmannin potentiates integrase-mediated killing of lymphocytes and reduces the efficiency of stable transduction by retroviruses. Mol. Cell Biol. 21, 1164–1172 (2001).

    Article  CAS  Google Scholar 

  8. Daniel, R. et al. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc. Natl Acad. Sci. USA 100, 4778–4783 (2003).

    Article  CAS  Google Scholar 

  9. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

  10. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  11. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  Google Scholar 

  12. Lau, A., Kanaar, R., Jackson, S. P. & O'Connor, M. J. Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO J. 23, 3421–3429 (2004).

    Article  CAS  Google Scholar 

  13. Ziv, Y. et al. Recombinant ATM protein complements the cellular AT phenotype. Oncogene 15, 159–167 (1997).

    Article  CAS  Google Scholar 

  14. Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol. 1, 179–186 (2000).

    Article  CAS  Google Scholar 

  15. Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11, 71–77 (2001).

    Article  CAS  Google Scholar 

  16. Leavitt, A. D., Robles, G., Alesandro, N. & Varmus, H. E. Human immunodeficiency virus type-1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J. Virol. 70, 721–728 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  18. Zhou, B. B. et al. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342–10348 (2000).

    Article  CAS  Google Scholar 

  19. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    Article  CAS  Google Scholar 

  20. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    Article  CAS  Google Scholar 

  21. Lim, D. S. et al. ATM phosphorylates p95/NBS1 in a S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  Google Scholar 

  22. Suhnel, J. Evaluation of synergism or antagonism for the combined action of antiviral agents. Antiviral Res. 13, 23–39 (1990).

    Article  CAS  Google Scholar 

  23. DeHart, J. L. et al. The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J. Virol. 79, 1389–1396 (2005).

    Article  CAS  Google Scholar 

  24. Ariumi, Y. et al. DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type-1 integration. J. Virol. 79, 2973–2978 (2005).

    Article  CAS  Google Scholar 

  25. Sakaria, J. N. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59, 4375–4382 (1999).

    Google Scholar 

  26. Block, W. D. et al. Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. Nucleic Acids Res. 32, 1967–1972 (2004).

    Article  CAS  Google Scholar 

  27. Cortez, D. Caffeine inhibits the checkpoint responses without inhibiting the ataxia-telangiectasia-mutaed (ATM) and ATM-and-Rad3-related (ATR) protein kinases. J. Biol. Chem. 278, 37139–37145 (2003).

    Article  CAS  Google Scholar 

  28. Foukas, L. C. et al. Direct effects of caffeine and theophylline on p110δ and other phosphoinositide 3-kinases. J. Biol. Chem. 277, 37124–37130 (2002).

    Article  CAS  Google Scholar 

  29. Veuger, S. J. et al. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res. 63, 6008–6015 (2003).

    CAS  PubMed  Google Scholar 

  30. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).

    Article  CAS  Google Scholar 

  31. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    Article  CAS  Google Scholar 

  32. Daniel, R. et al. Histone H2AX is phosphorylated at sites of retroviral DNA integration but is dispensable for postintegration repair. J. Biol. Chem. 279, 45810–45814 (2004).

    Article  CAS  Google Scholar 

  33. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  Google Scholar 

  34. Gaken, J. A. et al. Efficient retroviral infection of mammalian cells is blocked by inhibition of poly(ADP-ribose) polymerase activity. J. Virol. 70, 3992–4000 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ha, H. C. et al. Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. Proc. Natl Acad. Sci. USA 98, 3364–3368 (2001).

    Article  CAS  Google Scholar 

  36. Siva, A. C. & Bushman, F. Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. J. Virol. 76, 11904–11910 (2002).

    Article  CAS  Google Scholar 

  37. Rumbaugh, J. A., Fuentes, G. M. & Bambara, R. A. Processing of an HIV replication intermediate by the human DNA replication enzyme FEN1. J. Biol. Chem. 273, 28740–28745 (1998).

    Article  CAS  Google Scholar 

  38. Faust, E. A. & Triller, H. Stimulation of human flap endonuclease 1 by human immunodeficiency virus type-1 integrase: possible role for flap endonuclease 1 in 5′-end processing of human immunodeficiency virus type-1 integration intermediates. J. Biomed. Sci. 9, 273–287 (2002).

    CAS  PubMed  Google Scholar 

  39. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000).

    Article  CAS  Google Scholar 

  41. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a novel therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  Google Scholar 

  42. Borghesani, P. R. et al. Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc. Natl Acad. Sci. USA 97, 3336–3341 (2000).

    Article  CAS  Google Scholar 

  43. Roehm, N. W., Rodgers, G. H., Hatfield, S. M. & Glasebrook, A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 142, 257–265 (1991).

    Article  CAS  Google Scholar 

  44. Taylor, D. L. et al. Drug resistance and drug combination features of the human immunodeficiency virus inhibitor, BCH-10652 [(+/−)-2'-deoxy-3'-oxa-4'-thiocytidine, dOTC]. Antivir. Chem. Chemother. 11, 291–301 (2000).

    Article  CAS  Google Scholar 

  45. Butler, S. L., Hansen, M. S. & Bushman, F. D. A quantitative assay for HIV DNA integration in vivo. Nature Med. 7, 631–634 (2001).

    Article  CAS  Google Scholar 

  46. Naldini, L. et al. In vivo delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the efforts of M. Hummersone, L. Rigoreau, I. Hickson and C. Richardson for their work on KU-55933. We would also like to thank M. Albertella and A. Jazayeri for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. O'Connor.

Ethics declarations

Competing interests

A.l., G.C.M.S. and M.O.C. are employees of Kudos Pharmaceuticals Ltd. S.P.J. is the scientific founder and chief scientific officer of Kudos Pharmaceuticals Ltd.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, A., Swinbank, K., Ahmed, P. et al. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat Cell Biol 7, 493–500 (2005). https://doi.org/10.1038/ncb1250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing