Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of PTEN by Rho small GTPases

A Corrigendum to this article was published on 01 September 2006

A Corrigendum to this article was published on 01 May 2005

Abstract

PTEN (phosphatase and tensin homologue) is a phosphatase that dephosphorylates both protein and phosphoinositide substrates. It is mutated in a variety of human tumours and has important roles in a diverse range of biological processes1,2,3,4, including cell migration5,6,7 and chemotaxis8,9. PTEN's intracellular localization and presumably activity are regulated by chemoattractants in Dictyostelium10,11 and mouse neutrophils12. However, the mechanisms for its regulation remain elusive. Here we show that RhoA and Cdc42, members of the Rho family of small GTPases13,14,15,16, regulate the intracellular localization of PTEN in leukocytes and human transfected embryonic kidney cells. In addition, active RhoA is able to stimulate the phospholipid phosphatase activity of PTEN in human embryonic kidney cells and leukocytes, and this regulation seems to require RhoA's downstream effector, RhoA-associated kinase (Rock). Furthermore, we have identified key residues on PTEN that are required for its regulation by the small GTPase, and show that small GTPase-mediated regulation of PTEN has a significant role in the regulation of chemotaxis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of PTEN localization.
Figure 2: Regulation of PTEN activity.
Figure 3: Rock regulates PTEN.
Figure 4: PTEN regulation in chemotaxis.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Di Cristofano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell 100, 387–390 (2000).

    Article  CAS  Google Scholar 

  2. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  Google Scholar 

  3. Sulis, M. L. & Parsons, R. PTEN: from pathology to biology. Trends Cell Biol. 13, 478–483 (2003).

    Article  CAS  Google Scholar 

  4. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).

    Article  CAS  Google Scholar 

  5. Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614–1617 (1998).

    Article  CAS  Google Scholar 

  6. Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr. Biol. 10, 401–404 (2000).

    Article  CAS  Google Scholar 

  7. Raftopoulou, M., Etienne-Manneville, S., Self, A., Nicholls, S. & Hall, A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303, 1179–1181 (2004).

    Article  CAS  Google Scholar 

  8. Comer, F. I. & Parent, C. A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

    Article  CAS  Google Scholar 

  9. Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).

    Article  CAS  Google Scholar 

  10. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  Google Scholar 

  11. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  Google Scholar 

  12. Li, Z. et al. Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 114, 215–227 (2003).

    Article  CAS  Google Scholar 

  13. Bokoch, G. M. Regulation of cell function by Rho family GTPases. Immunol. Res. 21, 139–148 (2000).

    Article  CAS  Google Scholar 

  14. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  15. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  16. Fukata, M., Nakagawa, M. & Kaibuchi, K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15, 590–597 (2003).

    Article  CAS  Google Scholar 

  17. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  Google Scholar 

  18. Benard, V., Bohl, B. P. & Bokoch, G. M. Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).

    Article  CAS  Google Scholar 

  19. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  Google Scholar 

  20. Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur. J. Biochem. 242, 171–185 (1996).

    Article  CAS  Google Scholar 

  21. Amano, M., Fukata, Y. & Kaibuchi, K. Regulation and functions of Rho-associated kinase. Exp. Cell Res. 261, 44–51 (2000).

    Article  CAS  Google Scholar 

  22. Klippel, A. et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell Biol. 16, 4117–4127 (1996).

    Article  CAS  Google Scholar 

  23. Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).

    Article  CAS  Google Scholar 

  24. Das, S., Dixon, J. E. & Cho, W. Membrane-binding and activation mechanism of PTEN. Proc. Natl Acad. Sci. USA 100, 7491–7496 (2003).

    Article  CAS  Google Scholar 

  25. Amano, M. et al. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 3, 177–188 (1998).

    Article  CAS  Google Scholar 

  26. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  Google Scholar 

  27. Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA 95, 13513–13518 (1998).

    Article  CAS  Google Scholar 

  28. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  29. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

  30. Anzelon, A. N., Wu, H. & Rickert, R. C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nature Immunol. 4, 287–294 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bourne for providing cDNAs and for critical suggestions and comments; A. Hall, J. Chernoff, M. Schwartz and S. Gutkinds for cDNAs; and B. Mayer for critically reading the manuscript. This work is supported by grants from NIH (to D.W. and T.H.) and the 973 program (2002CB513000 to L.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Li or Dianqing Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Dong, X., Wang, Z. et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7, 399–404 (2005). https://doi.org/10.1038/ncb1236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing