Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2

Abstract

Coumarin derivatives such as warfarin represent the therapy of choice for the long-term treatment and prevention of thromboembolic events. Coumarins target blood coagulation by inhibiting the vitamin K epoxide reductase multiprotein complex (VKOR)1. This complex recycles vitamin K 2,3-epoxide to vitamin K hydroquinone, a cofactor that is essential for the post-translational γ-carboxylation of several blood coagulation factors2,3. Despite extensive efforts, the components of the VKOR complex have not been identified4,5,6,7,8. The complex has been proposed to be involved in two heritable human diseases: combined deficiency of vitamin-K-dependent clotting factors type 2 (VKCFD2; Online Mendelian Inheritance in Man (OMIM) 607473), and resistance to coumarin-type anticoagulant drugs (warfarin resistance, WR; OMIM 122700). Here we identify, by using linkage information from three species, the gene vitamin K epoxide reductase complex subunit 1 (VKORC1), which encodes a small transmembrane protein of the endoplasmic reticulum. VKORC1 contains missense mutations in both human disorders and in a warfarin-resistant rat strain. Overexpression of wild-type VKORC1, but not VKORC1 carrying the VKCFD2 mutation, leads to a marked increase in VKOR activity, which is sensitive to warfarin inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VKORC1 mutations in individuals with VKCFD2 and WR.
Figure 2: Amino acid sequence alignment of VKORC1 and VKORC1L1.
Figure 3: Subcellular location of VKORC1.

Similar content being viewed by others

References

  1. Suttie, J. W. The biochemical basis of warfarin therapy. Adv. Exp. Med. Biol. 214, 3–16 (1987)

    CAS  PubMed  Google Scholar 

  2. Nelsestuen, G. L., Zytkovicz, T. H. & Howard, J. B. The mode of action of vitamin K. Identification of γ-carboxyglutamic acid as a component of prothrombin. J. Biol. Chem. 249, 6347–6350 (1974)

    CAS  PubMed  Google Scholar 

  3. Stenflo, J., Fernlund, P., Egan, W. & Roepstorff, P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl Acad. Sci. USA 71, 2730–2733 (1974)

    Article  ADS  CAS  Google Scholar 

  4. Fasco, M. J., Principe, L. M., Walsh, W. A. & Friedman, P. A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry 22, 5655–5660 (1983)

    Article  CAS  Google Scholar 

  5. Cain, D., Hutson, S. M. & Wallin, R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J. Biol. Chem. 272, 29068–29075 (1997)

    Article  CAS  Google Scholar 

  6. Begent, L. A. et al. Characterization and purification of the vitamin K1 2,3-epoxide reductases system from rat liver. J. Pharm. Pharmacol. 53, 481–486 (2001)

    Article  CAS  Google Scholar 

  7. Lee, J. J. & Fasco, M. J. Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide. Biochemistry 23, 2246–2252 (1984)

    Article  CAS  Google Scholar 

  8. Wallin, R., Hutson, S. M., Cain, D., Sweatt, A. & Sane, D. C. A molecular mechanism for genetic warfarin resistance in the rat. FASEB J. 15, 2542–2544 (2001)

    Article  CAS  Google Scholar 

  9. Fregin, A. et al. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 100, 3229–3232 (2002)

    Article  CAS  Google Scholar 

  10. Kohn, M. H. & Pelz, H. J. Genomic assignment of the warfarin resistance locus, Rw, in the rat. Mamm. Genome 10, 696–698 (1999)

    Article  CAS  Google Scholar 

  11. Greaves, J. H. & Ayres, P. Heritable resistance to warfarin in rats. Nature 215, 877–878 (1967)

    Article  ADS  Google Scholar 

  12. Wallace, M. E. & MacSwiney, F. J. A major gene controlling warfarin-resistance in the house mouse. J. Hyg. (Lond.) 76, 173–181 (1976)

    Article  CAS  Google Scholar 

  13. Martin, A. D., Steed, L. C., Redfern, R., Gill, J. E. & Huson, L. W. Warfarin-resistance genotype determination in the Norway rat. Rattus norvegicus. Lab. Anim. 13, 209–214 (1979)

    Article  CAS  Google Scholar 

  14. Thijssen, H. H. & Pelz, H. J. in Advances in Vertebrate Pest Management (eds Pelz, H. J., Cowan, D. P. & Feare, C. J.) 181–192 (Filander, Fürth, 2001)

    Google Scholar 

  15. Jackson, M. R., Nilsson, T. & Peterson, P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153–3162 (1990)

    Article  CAS  Google Scholar 

  16. Li, T., Yang, C. T., Jin, D. & Stafford, D. W. Identification of a Drosophila vitamin K-dependent γ-glutamyl carboxylase. J. Biol. Chem. 275, 18291–18296 (2000)

    Article  CAS  Google Scholar 

  17. Bandyopadhyay, P. K. et al. Gamma-glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc. Natl Acad. Sci. USA 99, 1264–1269 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Romero, E. E., Velazquez-Estades, L. J., Deo, R., Schapiro, B. & Roth, D. A. Cloning of rat vitamin K-dependent γ-glutamyl carboxylase and developmentally regulated gene expression in postimplantation embryos. Exp. Cell Res. 243, 334–346 (1998)

    Article  CAS  Google Scholar 

  19. Wallin, R. & Martin, L. F. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J. Clin. Invest. 76, 1879–1884 (1985)

    Article  CAS  Google Scholar 

  20. Presnell, S. R. & Stafford, D. W. The vitamin K-dependent carboxylase. Thromb. Haemost. 87, 937–946 (2002)

    Article  CAS  Google Scholar 

  21. Oldenburg, J. et al. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide- reductase complex. Thromb. Haemost. 84, 937–941 (2000)

    Article  CAS  Google Scholar 

  22. Fasco, M. J., Preusch, P. C., Hildebrandt, E. & Suttie, J. W. Formation of hydroxyvitamin K by vitamin K epoxide reductase of warfarin-resistant rats. J. Biol. Chem. 258, 4372–4380 (1983)

    CAS  PubMed  Google Scholar 

  23. Hörtnagel, K., Prokisch, H. & Meitinger, T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum. Mol. Genet. 12, 321–327 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Hermann-Brackmann, W. Eberl, J. Pattinson, A.-N. Parkes and R. Jurgutis for the donation and clinical characterization of patient samples; V. Milenkovic for technical assistance and H. Höhn, T. Meitinger and T. Wienker for discussions and critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG), the Bundesministerium für Bildung und Forschung Deutsches Zentrum für Luft- und Raumfahrt (BMBF/DLR), Baxter Germany, the Stiftung Hämotherapie-Forschung, the Gesellschaft für Thrombose- und Hämostaseforschung (GTH) and the BMBF projects German National Genome Research Network (NGFN) and Bioinformatics for the Functional Analysis of Mammalian Genomes (BFAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Oldenburg.

Ethics declarations

Competing interests

Baxter Healthcare Corporation has filed a patent protecting the diagnostic and therapeutic consequences of the research described in the paper. Commercialization of the patent may result in financial benefits to the authors affiliated with the University of Würzburg and the Technical University of Munich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rost, S., Fregin, A., Ivaskevicius, V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541 (2004). https://doi.org/10.1038/nature02214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02214

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing