Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells

Abstract

The protein kinase Syk is a key mediator of proximal B-cell receptor (BCR) signaling. Following antigen stimulation, Syk is recruited to the BCR and becomes activated by phosphorylation at Y352. Recently, Syk was found to be constitutively phosphorylated in several common B-cell lymphoma subtypes, indicating a role for antigen-independent Syk activation in the pathogenesis of these diseases. We now report that Syk is constitutively phosphorylated on the activating Y352 residue in chronic lymphocytic leukemia (CLL) B cells. To examine the effects of constitutive Syk activity on intracellular signaling and leukemic cell survival, we performed in vitro studies with the Syk inhibitor R406. Treatment with R406 induced leukemic cell apoptosis in the majority of investigated cases and affected the basal activity or expression of several pro-survival molecules regulated by Syk, including the Akt and extracellular signal-regulated (ERK) kinases, and the anti-apoptotic protein Mcl-1. In addition, R406 prevented the increase in leukemic cell viability induced by sustained BCR engagement and inhibited BCR-induced Akt activation and Mcl-1 upregulation. Collectively, these data identify Syk as a potential target for CLL treatment and suggest that inhibition of this kinase could provide a double therapeutic benefit by disrupting both antigen-dependent and antigen-independent signaling pathways that regulate leukemic cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ferrarini M, Chiorazzi N . Recent advances in the molecular biology and immunobiology of chronic lymphocytic leukemia. Semin Hematol 2004; 41: 207–223.

    Article  CAS  PubMed  Google Scholar 

  2. Stevenson FK, Caligaris-Cappio F . Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004; 103: 4389–4395.

    Article  CAS  PubMed  Google Scholar 

  3. Kipps TJ . The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best Pract Res Clin Haematol 2007; 20: 415–424.

    Article  CAS  PubMed  Google Scholar 

  4. Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 2004; 200: 519–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 2004; 104: 2879–2885.

    Article  CAS  PubMed  Google Scholar 

  6. Widhopf II GF, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ . Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 2004; 104: 2499–2504.

    Article  PubMed  Google Scholar 

  7. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  8. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  9. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  11. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351: 893–901.

    Article  CAS  PubMed  Google Scholar 

  12. Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G . Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood 2003; 101: 1087–1093.

    Article  CAS  PubMed  Google Scholar 

  13. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002; 100: 4609–4614.

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Apgar J, Huynh L, Dicker F, Giago-McGahan T, Rassenti L et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 2005; 105: 2036–2041.

    Article  CAS  PubMed  Google Scholar 

  15. Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG . ZAP-70 enhances B-cell receptor signaling in spite of absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B-cells. Blood 2007; 109: 2032–2039.

    Article  CAS  PubMed  Google Scholar 

  16. Ian Mockridge C, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK . Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 2007; 109: 4424–4431.

    Article  PubMed  Google Scholar 

  17. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 2002; 99: 4087–4093.

    Article  CAS  PubMed  Google Scholar 

  18. Monroe JG . ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 2006; 6: 283–294.

    Article  CAS  PubMed  Google Scholar 

  19. Kurosaki T, Johnson SA, Pao L, Sada K, Yamamura H, Cambier JC . Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling. J Exp Med 1995; 182: 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  20. Li HL, Forman MS, Kurosaki T, Pure E . Syk is required for BCR-mediated activation of p90Rsk, but not p70S6k, via a mitogen-activated protein kinase-independent pathway in B cells. J Biol Chem 1997; 272: 18200–18208.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Kimura T, Siraganian RP . Mutations in the activation loop tyrosines of protein tyrosine kinase Syk abrogate intracellular signaling but not kinase activity. J Immunol 1998; 161: 4366–4374.

    CAS  PubMed  Google Scholar 

  22. Atwell S, Adams JM, Badger J, Buchanan MD, Feil IK, Froning KJ et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J Biol Chem 2004; 279: 55827–55832.

    Article  CAS  PubMed  Google Scholar 

  23. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J . Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 2007; 129: 735–749.

    Article  CAS  PubMed  Google Scholar 

  24. Niiro H, Clark EA . Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2002; 2: 945–956.

    Article  CAS  PubMed  Google Scholar 

  25. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B-cells. Blood 2005; 105: 4820–4827.

    Article  CAS  PubMed  Google Scholar 

  26. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  PubMed  Google Scholar 

  27. Leseux L, Hamdi SM, Al Saati T, Capilla F, Recher C, Laurent G et al. Syk-dependent mTOR activation in follicular lymphoma cells. Blood 2006; 108: 4156–4162.

    Article  CAS  PubMed  Google Scholar 

  28. Gururajan M, Jennings CD, Bondada S . Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol 2006; 176: 5715–5719.

    Article  CAS  PubMed  Google Scholar 

  29. Rinaldi A, Kwee I, Taborelli M, Largo C, Uccella S, Martin V et al. Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 2006; 132: 303–316.

    Article  CAS  PubMed  Google Scholar 

  30. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008; 111: 2230–2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gururajan M, Dasu T, Shahidain S, Jennings CD, Robertson DA, Rangnekar VM et al. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol 2007; 178: 111–121.

    Article  CAS  PubMed  Google Scholar 

  32. Kuno Y, Abe A, Emi N, Iida M, Yokozawa T, Towatari M et al. Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 2001; 97: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  33. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A . Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 2006; 20: 313–318.

    Article  CAS  PubMed  Google Scholar 

  34. Wossning T, Herzog S, Köhler F, Meixlsperger S, Kulathu Y, Mittler G et al. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. J Exp Med 2006; 203: 2829–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 2005; 115: 369–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther 2006; 319: 998–1008.

    Article  CAS  PubMed  Google Scholar 

  37. Iglesias-Serret D, de Frias M, Santidrián AF, Coll-Mulet L, Cosialls AM, Barragán M et al. Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 2007; 21: 281–287.

    Article  CAS  PubMed  Google Scholar 

  38. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  39. Cuní S, Pérez-Aciego P, Pérez-Chacón G, Vargas JA, Sánchez A, Martín-Saavedra FM et al. A sustained activation of PI3K/NF-κB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    Article  PubMed  Google Scholar 

  40. Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML et al. The NF-κB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 2008; 111: 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  41. Matsubara S, Li G, Takeda K, Loader JE, Pine P, Masuda ES et al. Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness. Am J Respir Crit Care Med 2006; 173: 56–63.

    Article  CAS  PubMed  Google Scholar 

  42. Kanie T, Abe A, Matsuda T, Kuno Y, Towatari M, Yamamoto T et al. TEL-Syk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways. Leukemia 2004; 18: 548–555.

    Article  CAS  PubMed  Google Scholar 

  43. Michels J, O’Neill JW, Dallman CL, Mouzakiti A, Habens F, Brimmell M et al. Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 2004; 23: 4818–4827.

    Article  CAS  PubMed  Google Scholar 

  44. Chiu CW, Dalton M, Ishiai M, Kurosaki T, Chan AC . BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. EMBO J 2002; 21: 6461–6472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feshchenko EA, Langdon WY, Tsygankov AY . Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 1998; 273: 8323–8331.

    Article  CAS  PubMed  Google Scholar 

  46. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 3118–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ticchioni M, Essafi M, Jeandel PY, Davi F, Cassuto JP, Deckert M et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene 2007; 26: 7081–7091.

    Article  CAS  PubMed  Google Scholar 

  48. Hussain SR, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA et al. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 2007; 13: 2144–2150.

    Article  CAS  PubMed  Google Scholar 

  49. Balakrishnan K, Burger JA, Wierda WG, Gandhi V . AT-101 induces apoptosis in CLL B-cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood prepublished online 3 October 2008; DOI: 10.1182/blood-2008-02-138560.

    Article  PubMed  Google Scholar 

  50. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807–3817.

    Article  CAS  PubMed  Google Scholar 

  51. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  52. Kitada S, Zapata JM, Andreeff M, Reed JC . Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 106: 995–1004.

    Article  CAS  PubMed  Google Scholar 

  53. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    Article  CAS  PubMed  Google Scholar 

  54. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE . VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004; 104: 788–794.

    Article  CAS  PubMed  Google Scholar 

  55. Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 2002; 100: 1795–1801.

    Article  CAS  PubMed  Google Scholar 

  56. Lanemo Myhrinder A, Hellqvist E, Sidorova E, Söderberg A, Baxendale H, Dahle C et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 2008; 111: 3838–3848.

    Article  PubMed  Google Scholar 

  57. Zhu Y, Herlaar E, Masuda ES, Burleson GR, Nelson AJ, Grossbard EB et al. Immunotoxicity assessment for the novel Spleen tyrosine kinase inhibitor R406. Toxicol Appl Pharmacol 2007; 221: 268–277.

    Article  CAS  PubMed  Google Scholar 

  58. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    Article  PubMed  Google Scholar 

  59. Chen L, Juszczynski P, Takeyama K, Aguiar RC, Shipp MA . Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood 2006; 108: 3428–3433.

    Article  CAS  PubMed  Google Scholar 

  60. Motiwala T, Majumder S, Kutay H, Smith DS, Neuberg DS, Lucas DM et al. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res 2007; 13: 3174–3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a translational research grant from the Leukemia and Lymphoma Society (Grant 6043-06 to DGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Efremov.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobessi, S., Laurenti, L., Longo, P. et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 23, 686–697 (2009). https://doi.org/10.1038/leu.2008.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.346

Keywords

This article is cited by

Search

Quick links