Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia

Abstract

Mutations and chromosomal translocations occur in leukemic cells that result in elevated expression or constitutive activation of various growth factor receptors and downstream kinases. The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are often activated by mutations in upstream genes. The Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways are regulated by upstream Ras that is frequently mutated in human cancer. Recently, it has been observed that the FLT-3 and Jak kinases and the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase are also frequently mutated or their expression is altered in certain hematopoietic neoplasms. Many of the events elicited by the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways have direct effects on survival pathways. Aberrant regulation of the survival pathways can contribute to uncontrolled cell growth and lead to leukemia. In this review, we describe the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT signaling cascades and summarize recent data regarding the regulation and mutation status of these pathways and their involvement in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . Jak/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    CAS  PubMed  Google Scholar 

  2. Lee Jr JT, McCubrey JA . Targeting the Raf kinase cascade in cancer therapy—novel molecular targets and therapeutic strategies. Expert Opin Ther Targets 2002; 6: 659–678.

    CAS  PubMed  Google Scholar 

  3. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 1999; 13: 1109–1166.

    CAS  PubMed  Google Scholar 

  4. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem Biophys Acta 2007; 177: 1263–1284.

    Google Scholar 

  5. Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci 2005; 10: 975–987.

    CAS  PubMed  Google Scholar 

  6. Matsuguchi T, Salgia R, Hallek M, Eder M, Druker B, Ernst TJ et al. Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210BCR/ABL. J Biol Chem 1994; 269: 5016–5021.

    CAS  PubMed  Google Scholar 

  7. Inhorn RC, Carlesso N, Durstin M, Frank DA, Griffin JD . Identification of a viability domain in the granulocyte/macrophage colony-stimulating factor receptor beta-chain involving tyrosine-750. Proc Natl Acad Sci USA 1995; 92: 8665–8669.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Okuda K, Foster R, Griffin JD . Signaling domains of the beta c chain of the GM-CSF/IL-3/IL-5 receptor. Ann NY Acad Sci 1999; 872: 305–313.

    CAS  PubMed  Google Scholar 

  9. Tauchi T, Boswell HS, Leibowitz D, Broxmeyer HE . Coupling between p210bcr-abl and Shc and Grb2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to ras activation pathway. J Exp Med 1994; 179: 167–175.

    CAS  PubMed  Google Scholar 

  10. Lanfrancone L, Pelicci G, Brizzi MF, Aronica MG, Casciari C, Giuli S et al. Overexpression of Shc proteins potentiates the proliferative response to the granulocyte-macrophage colony-stimulating factor and recruitment of Grb2/Sos and Grb2/p140 complexes to the beta receptor subunit. Oncogene 1995; 10: 907–917.

    CAS  PubMed  Google Scholar 

  11. Minden A, Lin A, McMahon M, Lange-Carter C, Dérijard B, Davis RJ et al. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994; 266: 1719–1723.

    CAS  PubMed  Google Scholar 

  12. Lange-Carter CA, Johnson GL . Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 1994; 265: 1458–1461.

    CAS  PubMed  Google Scholar 

  13. Marais R, Light Y, Paterson HF, Marshall CJ . Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995; 14: 3136–3145.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Steelman LS, Bertrand FE, McCubrey JA . The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin Ther Targets 2004; 8: 537–550.

    CAS  PubMed  Google Scholar 

  15. Storm SM, Cleveland JL, Rapp UR . Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 1990; 5: 345–351.

    CAS  PubMed  Google Scholar 

  16. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–4383.

    CAS  PubMed  Google Scholar 

  17. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R . Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 1999; 18: 2137–2148.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu S, Robbins D, Frost J, Dang A, Lange-Carter C, Cobb MH . MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase. Proc Nat Acad Sci USA 1995; 92: 6808–6812.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    CAS  PubMed  Google Scholar 

  20. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR . Inhibition of caspase-9 by phosphorylation at Thr125 by ERK MAP kinase. Nat Cell Biol 2003; 5: 647–654.

    CAS  PubMed  Google Scholar 

  21. Dérijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ et al. Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 1995; 267: 682–685.

    PubMed  Google Scholar 

  22. Xing J, Ginty DD, Greenberg ME . Coupling of the Ras–MAPK pathway to gene activation by Rsk2, a growth factor regulated CREB kinase. Science 1996; 273: 959–963.

    CAS  PubMed  Google Scholar 

  23. Coutant A, Rescan C, Gilot D, Loyer P, Guguen-Guillouzo C, Baffet G . PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival. Hepatology 2002; 36: 1079–1088.

    CAS  PubMed  Google Scholar 

  24. Iijima Y, Laser M, Shiraishi H, Willey CD, Sundaravadivel B, Xu L et al. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J Biol Chem 2002; 277: 23065–23075.

    CAS  PubMed  Google Scholar 

  25. Blalock WL, Navolanic PM, Steelman LS, Shelton JG, Moye PW, Lee JT et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17: 1058–1067.

    CAS  PubMed  Google Scholar 

  26. Deng T, Karin M . c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 1994; 371: 171–175.

    Article  CAS  PubMed  Google Scholar 

  27. Davis RJ . Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995; 4: 459–467.

    Google Scholar 

  28. Robinson MJ, Stippec SA, Goldsmith E, White MA, Cobb MH . A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Curr Biol 1998; 21: 1141–1150.

    Google Scholar 

  29. Aplin AE, Stewart SA, Assoian RK, Juliano RL . Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 2001; 153: 273–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    CAS  PubMed  Google Scholar 

  31. Tresini M, Lorenzini A, Frisoni L, Allen RG, Cristofalo VJ . Lack of Elk-1 phosphorylation and dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp Cell Res 2001; 269: 287–300.

    CAS  PubMed  Google Scholar 

  32. Eblen ST, Catling AD, Assanah MC, Weber MJ . Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol Cell Biol 2001; 21: 249–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Adachi T, Kar S, Wang M, Carr BI . Transient and sustained ERK phosphorylation and nuclear translocation in growth control. J Cell Physiol 2002; 192: 151–159.

    CAS  PubMed  Google Scholar 

  34. Wang CY, Bassuk AG, Boise LH, Thompson CB, Bravo R, Leiden JM . Activation of the granulocyte-macrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors. Mol Cell Biol 1994; 14: 1153–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas RS, Tymms MJ, McKinlay LH, Shannon MF, Seth A, Kola I . ETS1, NFkappaB and AP1 synergistically transactivate the human GM-CSF promoter. Oncogene 1997; 23: 2845–2855.

    Google Scholar 

  36. Ponti C, Gibellini D, Boin F, Melloni E, Manzoli FA, Cocco L et al. Role of CREB transcription factor in c-fos activation in natural killer cells. Eur J Immunol 2002; 32: 3358–3365.

    CAS  PubMed  Google Scholar 

  37. Fry TJ, Mackall CL . Interleukin-7: from bench to clinic. Blood 2002; 99: 3892–3904.

    CAS  PubMed  Google Scholar 

  38. Deng X, Kornblau SM, Ruvolo PP, May Jr WS . Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. J Natl Cancer Inst Monogr 2001; 28: 30–37.

    Google Scholar 

  39. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W et al. Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 2003; 17: 2081–2089.

    CAS  PubMed  Google Scholar 

  40. Jia W, Yu C, Rahmani M, Krystal G, Sausville EA, Dent P et al. Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood 2003; 102: 1824–1832.

    CAS  PubMed  Google Scholar 

  41. Troppmair J, Rapp UR . Raf and the road to cell survival: a tale of bad spells, ring bearers and detours. Biochem Pharmacol 2003; 66: 1341–1345.

    CAS  PubMed  Google Scholar 

  42. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ . Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 2004; 101: 15313–15317.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marani M, Hancock D, Lopes R, Tenev T, Downward J, Lemoine NR . Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 2004; 23: 2431–2441.

    CAS  PubMed  Google Scholar 

  44. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ . Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 2003; 278: 18811–18816.

    CAS  PubMed  Google Scholar 

  45. Weston CR, Balmanno K, Chalmers C, Hadfield K, Molton SA, Ley R et al. Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 2003; 22: 1281–1293.

    CAS  PubMed  Google Scholar 

  46. Domina AM, Vrana J, Gregory MA, Hann SR, Craig RW . MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 2004; 23: 5301–5315.

    CAS  PubMed  Google Scholar 

  47. Gëlinas C, White E . BH3-only proteins in control: specificity regulates MCL-1 and BAK-mediated apoptosis. Genes Dev 2006; 19: 1263–1268.

    Google Scholar 

  48. O'Neill E, Kolch W . Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2/Hippo. Cell Cycle 2005; 4: 365–367.

    CAS  PubMed  Google Scholar 

  49. O'Neill E, Rushworth L, Baccarini M, Kolch W . Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene Raf. Science 2004; 306: 2267–2270.

    CAS  PubMed  Google Scholar 

  50. O'Neill EE, Matallanas D, Kolch W . Mammalian sterile 20-like kinases in tumor suppression: an emerging pathway. Cancer Res 2005; 65: 5485–5487.

    CAS  PubMed  Google Scholar 

  51. Drexler HG . Expression of the FLT-3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996; 10: 588–599.

    CAS  PubMed  Google Scholar 

  52. Rao P, Mufson RA . A membrane proximal domain of the human interleukin-3 receptor beta c subunit that signals DNA synthesis in NIH 3T3 cells 1995 specifically binds a complex of Src and Janus family tyrosine kinases and phosphatidylinositol 3-kinase. J Biol Chem 1995; 270: 6886–6893.

    CAS  PubMed  Google Scholar 

  53. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–603.

    CAS  PubMed  Google Scholar 

  54. Yu J, Wjasow C, Backer JM . Regulation of the p85/p110alpha phosphatidylinositol 3′-kinase. Distinct roles for the N-terminal and C-terminal SH2 domains. Biol Chem 1996; 273: 30199–30203.

    Google Scholar 

  55. Fu Z, Aronoff-Spencer E, Wu H, Gerfen GJ, Backer JM . The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Arch Biochem Biophys 2004; 432: 244–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Martelli AM, Faenza I, Billi AM, Manzoli L, Evangelisti C, Fala F et al. Intranuclear 3′-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell Signal 2006; 18: 1101–1107.

    CAS  PubMed  Google Scholar 

  57. Evangelisti C, Bortul R, Falà F, Tabellini G, Goto K, Martelli AM . Nuclear diacylglycerol kinases: emerging downstream regulators in cell signaling networks. Histol Histopathol 2007; 22: 573–579.

    CAS  PubMed  Google Scholar 

  58. Cocco L, Follo MY, Faenza I, Bavelloni A, Billi AM, Martelli AM et al. Nuclear inositide signaling: an appraisal of phospholipase C beta1 behavior in myeloblastic and leukemia cells. Adv Enzyme Regul 2007; 47: 2–9.

    CAS  PubMed  Google Scholar 

  59. Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007, 14: 2009–2023.

    CAS  PubMed  Google Scholar 

  60. Samuels Y, Ericson K . Oncogenic PI3K and its role in cancer. Curr Opin Oncol 2006; 18: 77–82.

    CAS  PubMed  Google Scholar 

  61. Engleman JA, Luo J, Canley LC . The evolution phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Google Scholar 

  62. Stephens L, Williams R, Hawkins P . Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol 2005; 5: 357–365.

    CAS  PubMed  Google Scholar 

  63. Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF . Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci USA 1997; 94: 11345–11350.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Troussard AA, Mawji NM, Ong C, Mui A, St-Arnaud R, Dedhar S . Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 2003; 278: 22374–22378.

    CAS  PubMed  Google Scholar 

  65. Xu Z, Ma DZ, Wang LY, Su JM, Zha XL . Transforming growth factor-beta1 stimulated protein kinase B serine-473 and focal adhesion kinase tyrosine phosphorylation dependent on cell adhesion in human hepatocellular carcinoma SMMC-7721 cells. Biochim Biophys Res Commun 2003; 312: 388–396.

    CAS  Google Scholar 

  66. Persad S, Dedhar S . The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Rev 2003; 22: 375–384.

    CAS  PubMed  Google Scholar 

  67. Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE . ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 2004; 23: 3454–3461.

    CAS  PubMed  Google Scholar 

  68. Noguchi M, Ropars V, Roumestand C, Suizu F . Proto-oncogene TCL1: more than just a coactivator for Akt. FASEB J 2007; 21: 1–12.

    Google Scholar 

  69. Gao T, Furnari F, Newton AC . PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18: 13–24.

    CAS  PubMed  Google Scholar 

  70. Ye K . PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death. J Cell Biochem 2005; 96: 463–472.

    CAS  PubMed  Google Scholar 

  71. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001; 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  72. Hay N . The Akt-mTOR tango and its relevance to cancer. Cancer Cell 2005; 8: 179–183.

    CAS  PubMed  Google Scholar 

  73. Scheid MP, Duronio V . Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci USA 1998; 95: 7439–7444.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    CAS  PubMed  Google Scholar 

  75. Nakae J, Park BC, Accili D . Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem 1999; 274: 15982–15985.

    CAS  PubMed  Google Scholar 

  76. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 1999; 96: 857–868.

    CAS  PubMed  Google Scholar 

  77. Medema RH, Kops GJ, Bos JL, Burgering BM . Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404: 782–787.

    CAS  PubMed  Google Scholar 

  78. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27Kip1. Mol Cell Biol 2000; 20: 9138–9148.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Qi XJ, Wildey GM, Howe PH . Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function. J Biol Chem 2006; 281: 813–823.

    CAS  PubMed  Google Scholar 

  80. Mayo LD, Donner DB . A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98: 10983–10985.

    Google Scholar 

  81. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M . Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 2002; 21: 1299–1303.

    CAS  PubMed  Google Scholar 

  82. Zhou BP, Hung MC . Novel targets of Akt, p21(Cip1.WAF1), and MDM2. Semin Oncol 2002; 29: 62–70.

    CAS  PubMed  Google Scholar 

  83. Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang HG et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 2004; 279: 5405–5412.

    CAS  PubMed  Google Scholar 

  84. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 2006; 203: 1657–1663.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Obexer P, Geiger K, Ambros PF, Meister B, Ausseriechner MJ . FKHRL1-mediated expression of Noxa and Bim induces apoptosis via the mitochondria in neuroblastoma cells. Cell Death Differ 2007; 14: 534–547.

    CAS  PubMed  Google Scholar 

  86. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LLM, Donner DB . NF-kappaB activation by tumor necrosis factor requires the Akt serine-threonine kinase. Nature 1999; 401: 82–85.

    CAS  PubMed  Google Scholar 

  87. Romashkova JA, Makarov SS . NF-kappaB is a target of Akt in anti-apoptotic PDGF signaling. Nature 1999; 401: 86–90.

    CAS  PubMed  Google Scholar 

  88. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS, Mayo MW . Akt suppresses apoptosis by stimulating the transactivation potential of the Rel A/p65 subunit of NF-kappaB. Mol Cell Biol 2000; 20: 1626–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Howe CJ, LaHair MM, Maxwell JA, Lee JT, Robinson PJ, Rodriguez-Mora O et al. Participation of the calcium/calmodulin-dependent kinases in hydrogen peroxide-induced IkappaB phosphorylation in human T lymphocytes. J Biol Chem 2002; 277: 30469–30476.

    CAS  PubMed  Google Scholar 

  90. Howe CJ, LaHair MM, McCubrey JA, Franklin RA . Redox regulation of the CaM-kinases. J Biol Chem 2004; 279: 44573–44581.

    CAS  PubMed  Google Scholar 

  91. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117: 225–237.

    CAS  PubMed  Google Scholar 

  92. Mayo MW, Baldwin AS . The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 2000; 1470: M55–M62.

    CAS  PubMed  Google Scholar 

  93. Shishodia S, Aggarwal BB . Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 2004; 119: 139–173.

    CAS  PubMed  Google Scholar 

  94. Du K, Montminy M . CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    CAS  PubMed  Google Scholar 

  95. Arcinas M, Heckman CA, Mehew JW, Boxer LM . Molecular mechanisms of transcriptional control of bcl-2 and c-myc in follicular and transformed lymphoma. Cancer Res 2001; 61: 5202–5206.

    CAS  PubMed  Google Scholar 

  96. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF . The antiapoptotic gene Mcl-1 is upregulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999; 19: 6195–6206.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mahalingam M, Templeton DJ . Constitutive activation of S6 kinase by deletion of amino-terminal autoinhibitory and rapamycin sensitivity domains. Mol Cell Biol 1996; 16: 405–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dufner A, Anjelkovic M, Burgering BMT, Hemmings B, Thomas G . Protein kinase B localization and activation and eukaryotic translational initiation factor 4E-binding protein phosphorylation. Mol Cell Biol 1999; 19: 4525–4534.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Romanelli A, Martin KA, Toker A, Bleinis J . p70 S6 kinase is regulated by protein kinase Cζ and participates in a phosphoinositide 3-kinase-regulated signaling complex. Mol Cell Biol 1999; 19: 2921–2928.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ . p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule Bad. Proc Natl Acad Sci USA 2001; 98: 9666–9670.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Edinger AL, Thompson CB . An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival. Oncogene 2004; 23: 5654–5663.

    CAS  PubMed  Google Scholar 

  102. Panwalkar A, Verstovsek S, Giles FJ . Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 2004; 100: 657–666.

    CAS  PubMed  Google Scholar 

  103. Jonassen AK, Mjos OD, Sack MN . p70S6 kinase is a functional target of insulin activated Akt cell-survival. Biochem Biophys Res Commun 2004; 315: 160–165.

    CAS  PubMed  Google Scholar 

  104. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179–193.

    CAS  PubMed  Google Scholar 

  105. Shaw RJ, Cantley LC . Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature 2006; 441: 424–430.

    CAS  PubMed  Google Scholar 

  106. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.

    CAS  PubMed  Google Scholar 

  107. Li DM, Sun H . TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 1997; 57: 2124–2129.

    CAS  PubMed  Google Scholar 

  108. Li J, Yen C, Liaw D, Podsypanina K, Bolse S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    CAS  PubMed  Google Scholar 

  109. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PN, Blalock WL et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 2003; 22: 469–480.

    CAS  PubMed  Google Scholar 

  110. Mahimainathan L, Choudhury GG . Inactivation of platelet-derived growth factor receptor by the tumor suppressor PTEN provides a novel mechanism of action of the phosphatase. J Biol Chem 2004; 279: 15258–15268.

    CAS  PubMed  Google Scholar 

  111. Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A . Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 2004; 303: 1179–1181.

    CAS  PubMed  Google Scholar 

  112. Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triposphate 5-phosphatase. Proc Natl Acad Sci USA 1996; 93: 689–1693.

    Google Scholar 

  113. Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AF, Norris FA et al. Multiple forms of an inositol polyphosphate 5-phosphatase from signaling complexes with Shc and Grb2. Curr Bio 1996; 6: 438–445.

    CAS  Google Scholar 

  114. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR . P150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Devel 1996; 10: 1084–1095.

    CAS  PubMed  Google Scholar 

  115. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM et al. 5′Phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 2000; 20: 6860–6871.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Muraille E, Pesesse X, Kuntz C, Erneux C . Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement in SHIP-2 in negative signaling of B-cells. Biochem J 1999; 342: 697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Laine J, Kunstle G, Obata T, Sha M, Noguchi M . The protooncogene TCL1 is an Akt coactivator. Mol Cell 2000; 6: 395–407.

    CAS  PubMed  Google Scholar 

  118. Virgilio L, Narducci MG, Isobe M, Billips LG, Cooper MD, Croce CM et al. Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci USA 1994; 91: 12530–12534.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Stern MH, Soulier J, Rosenwajg M, Nakahara K, Canki-Klain N, Aurias A et al. MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene 1993; 8: 2475–2483.

    CAS  PubMed  Google Scholar 

  120. Pekarsky Y, Hallas C, Isobe M, Russo G, Croce CM . Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc Natl Acad Sci USA 1999; 96: 2949–2951.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 2000; 97: 3028–3033.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Auguin D, Barthe P, Royer C, Stern MH, Noguchi M, Arold ST et al. Structural basis for the co-activation of protein kinase B by T-cell leukemia-1 (TCL1) family proto-oncoproteins. J Biol Chem 2004; 279: 35890–35902.

    CAS  PubMed  Google Scholar 

  123. Kunstle G, Laine J, Pierron G, Kagami S, Nakajima H, Hoh F et al. Identification of Akt association and oligomerization domains of the Akt kinase coactivator TCL1. Mol Cell Biol 2002; 22: 1513–1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. French SW, Shen RR, Koh PJ, Malon CS, Mallick P, Teitell MA . A modeled hydrophobic domain on the TCL1 oncoprotein mediates association with Akt at the cytoplasmic membrane. Biochemistry 2002; 41: 6376–6382.

    CAS  PubMed  Google Scholar 

  125. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    CAS  PubMed  Google Scholar 

  126. Giles FJ, Albitar M . Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 2005; 5: 653–661.

    CAS  PubMed  Google Scholar 

  127. Fingar DC, Blenis J . Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23: 3151–3171.

    CAS  PubMed  Google Scholar 

  128. Tokunaga C, Yoshino K, Yonezawa K . mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 2004; 313: 443–446.

    CAS  PubMed  Google Scholar 

  129. Martin DE, Soulard A, Hall MN . TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 2004; 119: 969–979.

    CAS  PubMed  Google Scholar 

  130. Witzig TE, Kaufmann SH . Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Curr Treat Options Oncol 2006; 7: 285–294.

    PubMed  Google Scholar 

  131. Mobasheri A, Richardson S, Mobasheri R, Shakibaei M, Hoyland JA . Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol Histopathol 2005; 20: 1327–1338.

    CAS  PubMed  Google Scholar 

  132. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10: 151–162.

    CAS  PubMed  Google Scholar 

  133. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5: 578–581.

    CAS  PubMed  Google Scholar 

  134. Hresko RC, Mueckler M . mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005; 280: 40406–40416.

    CAS  PubMed  Google Scholar 

  135. Granville CA, Memmott RM, Gills JJ, Dennis PA . Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006; 12: 679–689.

    CAS  PubMed  Google Scholar 

  136. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    CAS  PubMed  Google Scholar 

  137. Chow S, Minden MD, Hedley DW . Constitutive phosphorylation of the S6 ribosomal protein via mTOR and ERK signaling in the peripheral blasts of acute leukemia patients. Exp Hematol 2006; 34: 1183–1191.

    CAS  PubMed  Google Scholar 

  138. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Map kinase and p53 pathways. Leukemia. 2005; 19: 586–594.

    CAS  PubMed  Google Scholar 

  139. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P . ERK implication in cell cycle regulation. Biochim Biophys Acta 2007; 1773: 1299–1311.

    CAS  PubMed  Google Scholar 

  140. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543–1549.

    CAS  PubMed  Google Scholar 

  141. Inoki K, Ouyang H, Zhu T, Lindvall C, Wangy Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–969.

    CAS  PubMed  Google Scholar 

  142. De Toni F, Racaud-Sultan C, Chicanne G, Mas VM, Cariven C, Mesange F et al. A crosstalk between the Wnt and the adhesion-dependent signalling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 2006; 25: 3113–3122.

    CAS  PubMed  Google Scholar 

  143. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB et al. Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006; 20: 1211–1216.

    CAS  PubMed  Google Scholar 

  144. Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M et al. Rewired ERK–JNK signaling pathways in melanoma. Cancer 2007; 11: 447–460.

    CAS  Google Scholar 

  145. Krebs DL, Hilton DJ . SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001; 19: 378–387.

    CAS  PubMed  Google Scholar 

  146. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93: 373–383.

    CAS  PubMed  Google Scholar 

  147. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K . Jak2 deficiency defines an essential development checkpoint in definitive hematopoiesis. Cell 1998; 93: 397–409.

    CAS  PubMed  Google Scholar 

  148. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–395.

    CAS  PubMed  Google Scholar 

  149. Saharinen P, Silvennoinen O . The pseudokinase domain is required for suppression of the basal activity of Jak2 and Jak3 tyrosine kinase and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277: 47954–47963.

    CAS  PubMed  Google Scholar 

  150. Gu J, Wang Y, Gu X . Evolutionary analysis for functional divergence of Jak protein kinase domain and tissue-specific genes. J Mol Evol 2002; 54: 725–733.

    CAS  PubMed  Google Scholar 

  151. Cools J, Peeters P, Voet T, Aventin A, Mecucci C, Grandchamp B et al. Genomic organization of human JAK2 and mutation analysis of its JH2-domain in leukemia. Cytogenet Cell Genet 1999; 85: 260–266.

    CAS  PubMed  Google Scholar 

  152. Ho JM, Beattie BK, Squire JA, Frank DA, Barber DL . Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak–Stat signaling. Blood 1999; 93: 4354–4364.

    CAS  PubMed  Google Scholar 

  153. Barahmand-Pour F, Meinke A, Groner B, Decker T . Jak2–Stat5 interactions analyzed in yeast. J Biol Chem 1998; 273: 12567–12575.

    CAS  PubMed  Google Scholar 

  154. Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak–Stat pathways. Mol Cell Biol 1997; 17: 1562–1571.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fujitani Y, Hibi M, Fukada T, Takahashi-Tezuka M, Yoshida H, Yamaguchi T et al. An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene 1997; 14: 751–761.

    CAS  PubMed  Google Scholar 

  156. Riedy MC, Dutra AS, Blake TB, Modi W, Lal BK, Davis J et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics 1996; 37: 57–61.

    CAS  PubMed  Google Scholar 

  157. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995; 3: 771–782.

    CAS  PubMed  Google Scholar 

  158. Thomas DC, Berg LJ . The role of Jak3 in lymphoid development, activation and signaling. Curr Opin Immunol 1997; 9: 541–547.

    Google Scholar 

  159. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802.

    CAS  PubMed  Google Scholar 

  160. Velazquez L, Mogensen KE, Barbieri G, Fellous M, Uze G, Pellegrini S . Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction. J Biol Chem 1995; 270: 3327–3334.

    CAS  PubMed  Google Scholar 

  161. Oakes SA, Candotti F, Johnston JA, Chen YQ, Ryan JJ, Taylor N et al. Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Immunity 1996; 5: 605–615.

    CAS  PubMed  Google Scholar 

  162. David M, Petricoin III E, Benjamin C, Pine R, Weber MJ, Larner AC . Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science 1995; 269: 1721–1723.

    CAS  PubMed  Google Scholar 

  163. Winston LA, Hunter T . JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 1995; 270: 30837–30840.

    CAS  PubMed  Google Scholar 

  164. Durbin JE, Hackenmiller R, Simon MC, Levy DE . Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996; 84: 443–450.

    CAS  PubMed  Google Scholar 

  165. Simpson SJ, Shah S, Comiskey M, de Jong YP, Wang B, Mizoguchi E et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187: 1225–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997; 94: 3801–3804.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Danial NN, Pernis A, Rothman P . Jak–STAT signaling induced by the v-abl oncogene. Science 1995; 269: 1875–1877.

    CAS  PubMed  Google Scholar 

  168. Danial NN, Rothman P . JAK–STAT signaling activated by Abl oncogenes. Oncogene 2000; 19: 2523–2531.

    CAS  PubMed  Google Scholar 

  169. Migone TS, Lin JX, Cereseto A, Mulloy JC, O'Shea JJ, Franchini G et al. Constitutively activated Jak–STAT pathway in T cells transformed with HTLV-I. Science 1995; 269: 79–81.

    CAS  PubMed  Google Scholar 

  170. Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein–Barr virus (EBV)-related lymphoma cell lines. Blood 1996; 88: 809–816.

    CAS  PubMed  Google Scholar 

  171. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C et al. Stat3 as an oncogene. Cell 1999; 98: 295–303.

    CAS  PubMed  Google Scholar 

  172. Masuhara M, Sakamoto H, Matsumoto A, Suzuki R, Yasukawa H, Mitsui K et al. Cloning and characterization of novel CIS family genes. Biochem Biophys Res Commun 1997; 239: 439–446.

    CAS  PubMed  Google Scholar 

  173. Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 1998; 95: 114–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H et al. Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem Biophys Res Commun 1997; 237: 79–83.

    CAS  PubMed  Google Scholar 

  175. Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96: 2071–2076.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 2001; 276: 12530–12538.

    CAS  PubMed  Google Scholar 

  177. Kamura T, Sato S, Haque D, Liu L, Kaelin Jr WG, Conaway RC et al. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998; 12: 3872–3881.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Matsumoto A, Seki Y, Kubo M, Ohtsuka S, Suzuki A, Hayashi I et al. Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 1999; 19: 6396–6407.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924.

    CAS  PubMed  Google Scholar 

  180. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387: 924–929.

    CAS  PubMed  Google Scholar 

  181. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–921.

    CAS  PubMed  Google Scholar 

  182. Kile BT, Alexander WS . The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci 2001; 58: 1627–1635.

    CAS  PubMed  Google Scholar 

  183. Lindeman GJ, Wittlin S, Lada H, Naylor MJ, Santamaria M, Zhang JG et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev 2001; 15: 1631–1636.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Metcalf D, Alexander WS, Elefanty AG, Nicola NA, Hilton DJ, Starr R et al. Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1. Leukemia 1999; 13: 926–934.

    CAS  PubMed  Google Scholar 

  185. Starr R, Metcalf D, Elefanty AG, Brysha M, Willson TA, Nicola NA et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc Natl Acad Sci USA 1998; 95: 14395–14399.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Tanuma N, Nakamura K, Shima H, Kikuchi K . Protein-tyrosine phosphatase PTPepsilon C inhibits Jak–STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 2000; 275: 28216–28221.

    CAS  PubMed  Google Scholar 

  187. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409: 349–354.

    CAS  PubMed  Google Scholar 

  188. Rommel C, Clarke BA, Zimmermann S, Nuñez L, Rossman R, Reid K et al. Differentiation stage-specific inhibition of the Raf–MEK–ERK pathway by Akt. Science 1999; 286: 1738–1741.

    CAS  PubMed  Google Scholar 

  189. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999; 286: 1741–1744.

    CAS  PubMed  Google Scholar 

  190. Guan K, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 2000; 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  191. Zhang BH, Tang E, Zhu T, Greenberg M, Vojtek A, Guan KL . Serum and glucocorticoid-inducible kinase SGK phosphorylates and negatively regulates B-Raf. J Biol Chem 2001; 276: 31620–31626.

    CAS  PubMed  Google Scholar 

  192. Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R et al. Activation of mitochondrial Raf-1 is involved in the anti-apoptotic effects of Akt. Cancer Res 1999; 59: 2815–2819.

    CAS  PubMed  Google Scholar 

  193. McCubrey JA, Steelman LS, Blalock WL, Lee JT, Moye PW, Chang F et al. Synergistic effects of PI3K/Akt on abrogation of cytokine-dependency induced by oncogenic Raf. Adv Enzyme Regl 2001; 41: 289–323.

    CAS  Google Scholar 

  194. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prevent 2001; 25: 375–393.

    CAS  PubMed  Google Scholar 

  195. Gelfanov VM, Burgess GS, Litz-Jackson S, King AJ, Marshall MS, Nakshatri H et al. Transformation of interleukin-3-dependent cells without participation of Stat5/Bcl-xL: cooperation of akt with raf/erk leads to p65 nuclear factor κB-mediated antiapoptosis involving c-IAP2. Blood 2001; 15: 2508–2517.

    Google Scholar 

  196. von Gise A, Lorenz P, Wellbrock C, Hemmings B, Berberich-Siebelt F, Rapp UR et al. Apoptosis suppression by Raf-1 and MEK1 requires MEK and phosphatidylinositol 3-kinase dependent signals. Mol Cell Biol 2001; 21: 2324–2336.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Shelton JG, Steelman LS, Lee JT, Knapp SL, Blalock WL, Moye PW et al. Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene 2003; 22: 2478–2492.

    CAS  PubMed  Google Scholar 

  198. Shelton JG, Blalock WL, White ER, Steelman LS, McCubrey JA . Ability of the activated PI3K/Akt oncoproteins to synergize with MEK1 and induce cell cycle progression and abrogate the cytokine-dependence of hematopoietic cells. Cell Cycle 2004; 3: 503–512.

    CAS  PubMed  Google Scholar 

  199. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . Bad, a hetro-dimeric partner for Bcl-xL and Bcl-2 displaces Bax and promotes cell death. Cell 1995; 80: 285–291.

    CAS  PubMed  Google Scholar 

  200. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275: 10761–10766.

    CAS  PubMed  Google Scholar 

  201. Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM et al. Insulin-like growth factor-I induces Bcl-2 promoter through the transcription factor c-AMP-response element-binding protein. J Biol Chem 1999; 274: 27529–27535.

    CAS  PubMed  Google Scholar 

  202. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras–MAPK signaling pathway by transcription-dependent and independent mechanisms. Science 1999; 286: 1358–1362.

    CAS  PubMed  Google Scholar 

  203. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  204. Harada H, Becknell B, Wilm M, Mann M, Huang LJS, Taylor SS et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999; 3: 413–422.

    CAS  PubMed  Google Scholar 

  205. Sunayama J, Tsuruta F, Masuyama N, Gotoh Y . JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 2005; 170: 295–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. She QB, Solit DB, Ye Q, O'Reillly KE, Lobo J, Rosen N . The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005; 8: 287–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17: 393–403.

    CAS  PubMed  Google Scholar 

  208. Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 2003; 38: 899–914.

    CAS  PubMed  Google Scholar 

  209. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18: 4754–4765.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang K, Gross A, Waksman G, Korsmeyer SJ . Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol Cell Biol 1998; 18: 6083–6089.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ . Definitive hematopoiesis requires the mixed-lineage gene. Dev Cell 2004; 6: 437–443.

    CAS  PubMed  Google Scholar 

  213. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004; 18: 267–275.

    CAS  PubMed  Google Scholar 

  214. Vrana JA, Cleaveland ES, Eastman A, Craig RW . Inducer-and cell type-specific regulation of antiapoptotic MCL-1 in myeloid leukemia and multiple myeloma cells exposed to differentiation-inducing or microtubule-disrupting agents. Apoptosis 2006; 11: 1275–1288.

    CAS  PubMed  Google Scholar 

  215. Inoshita S, Takeda K, Hatai T, Terada Y, Sano M, Hata J et al. Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem 2002; 277: 43730–43734.

    CAS  PubMed  Google Scholar 

  216. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006; 21: 749–760.

    CAS  PubMed  Google Scholar 

  217. Yu J, Zhang L . The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 2005; 331: 851–858.

    CAS  PubMed  Google Scholar 

  218. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl L, Corral J, Ritterbach H et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999; 13: 32–37.

    CAS  PubMed  Google Scholar 

  219. Stirewalt DL, Kopecky KJ, Meshinchi S, Applebaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    CAS  PubMed  Google Scholar 

  220. Garnett MJ, Marais R . Guilty as charged: B-Raf is a human oncogene. Cancer Cell 2004; 6: 313–319.

    CAS  PubMed  Google Scholar 

  221. Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K et al. Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 2006; 166: 3401–3408.

    Google Scholar 

  222. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK)/RAS–BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    CAS  PubMed  Google Scholar 

  223. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    CAS  PubMed  Google Scholar 

  224. Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR . B- and C-RAF display essential differences in their binding to Ras. J Biol Chem 2007; 282: 26503–26516.

    CAS  PubMed  Google Scholar 

  225. Wan PT, Garnett MJ, Ros SM, Lee S, Niculescu-Duvaz D, Good VM et al. Mechanism of activation of the Raf–MEK signaling pathway by oncogenic mutations of B-Raf. Cell 2004; 116: 856–867.

    Google Scholar 

  226. Busca R, Abbe P, Mantous F, Aberdam E, Peyssonnaux C, Eychene A et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated in melanocytes. EMBO J 2000; 19: 2900–2910.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Rushworth LK, Hindley AD, O'Neil E, Kolch W . Regulation and role of Raf-1.B-Raf heterodimerization. Mol Cell Biol 2006; 26: 2262–2272.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Garnett MJ, Rana S, Paterson H, Barford D, Marais R . Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 2005; 20: 963–969.

    CAS  PubMed  Google Scholar 

  229. Rajagopalan H, Bordelli A, Lengauer C, Kinzler KN, Vogelstein B, Velculescu VE . Tumorigenesis: Raf/Ras oncogenes and mismatch-repair status. Nature 2002; 418: 934.

    CAS  PubMed  Google Scholar 

  230. Libra L, Malaponte G, Navolanic PM, Gangemi P, Bevelacqua V, Proietti L et al. Analysis of BRAF mutation in primary and metastatic melanoma. Cell Cycle 2006; 4: 968–970.

    Google Scholar 

  231. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108: 2358–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Shelton JG, Steelman LS, Abrams SL, Bertrand FE, Franklin RA, McMahon M et al. The epidermal growth factor receptor as a target for therapeutic intervention in numerous cancers—what's genetics got to do with it? Expert Opin Ther Targets 2005; 9: 1009–1030.

    CAS  PubMed  Google Scholar 

  233. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Bannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    CAS  PubMed  Google Scholar 

  234. Sordella R, Bell DW, Haber DA, Settleman J . Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305: 1163–1167.

    CAS  PubMed  Google Scholar 

  235. Sequist LV, Haber DA, Lynch TJ . Epidermal growth factor receptor mutations in non-small cell lung cancer; predicting clinical response to kinase inhibitors. Clin Cancer Res 2005; 11: 5668–5670.

    CAS  PubMed  Google Scholar 

  236. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor mutations are common in lung cancers from ‘never smokers’ are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005; 2: 57–61.

    CAS  Google Scholar 

  238. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. BRaf mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 358–362.

    CAS  PubMed  Google Scholar 

  239. Shelton JG, Steelman LS, Abrams SL, White ER, Akula SM, Franklin RA et al. Conditional EGFR promotes cell cycle progression and prevention of apoptosis in the absence of autocrine cytokines. Cell Cycle 2005; 4: 822–830.

    CAS  PubMed  Google Scholar 

  240. McCubrey JA, Shelton JG, Steelman LS, Franklin RA, Sreevalsan T, McMahon M . Conditionally active v-ErbB:ER transforms NIH-3T3 cells and converts human and mouse cells to cytokine-independence. Oncogene 2004; 23: 7810–7820.

    CAS  PubMed  Google Scholar 

  241. Konopleva M, Shi Y, Steelman LS, Shelton JG, Munsell M, Marini F et al. Development of a conditional in vivo model to evaluate the efficacy of small molecule inhibitors for the treatment of Raf-transformed hematopoietic cells. Cancer Res 2005; 65: 9962–9970.

    CAS  PubMed  Google Scholar 

  242. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H et al. A conditionally-active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene 2000; 19: 526–536.

    CAS  PubMed  Google Scholar 

  243. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine-dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    CAS  PubMed  Google Scholar 

  244. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine-dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    CAS  PubMed  Google Scholar 

  245. Kubota Y, Ohnishi H, Kitanaka A, Ishida T, Tanaka T . Constitutive activation of PI3K is involved in the spontaneous proliferation of primary acute myeloid leukemia cells: direct evidence of PI3K activation. Leukemia 2004; 18: 1438–1440.

    CAS  PubMed  Google Scholar 

  246. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sánchez A, Martín-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    CAS  PubMed  Google Scholar 

  247. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370: 527–532.

    CAS  PubMed  Google Scholar 

  248. Hu L, Shi Y, Hsu JH, Gera J, Van Ness B, Lichtenstein A . Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003; 101: 3126–3135.

    CAS  PubMed  Google Scholar 

  249. Gire V, Marshall C, Wynford-Thomas D . PI-3-kinase is an essential anti-apoptotic effector in the proliferative response of primary human epithelial cells to mutant RAS. Oncogene 2000; 19: 2269–2276.

    CAS  PubMed  Google Scholar 

  250. Sun H, King AJ, Diaz HB, Marshall MS . Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Curr Biol 2000; 10: 281–284.

    CAS  PubMed  Google Scholar 

  251. Ninomiya Y, Kato K, Takahashi A, Ueoka Y, Kamikihara T, Arima T et al. K-Ras and H-Ras activation promote distinct consequences on endometrial cell survival. Cancer Res 2004; 64: 2759–2765.

    CAS  PubMed  Google Scholar 

  252. Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W et al. Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 2002; 16: 894–901.

    CAS  PubMed  Google Scholar 

  253. Müller CI, Miller CW, Hofman W-K, Gross ME, Walsh CS, Kawamata N et al. Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene. Leuk Res 2007; 31: 27–32.

    PubMed  Google Scholar 

  254. Nakahara Y, Nagai H, Kinoshita T, Uchida T, Hatano S, Murate T et al. Mutational analysis of the PTEN/MMAC1 gene in non-Hodgkin's lymphoma. Leukemia 1998; 12: 1277–1280.

    CAS  PubMed  Google Scholar 

  255. Herranz M, Urioste M, Santos J, Martinez-Delgado JB, Rivas C, Benitez J et al. Allelic losses and genetic instabilities of PTEN and p73 in non-Hodgkin lymphomas. Leukemia 2000; 14: 1325–1327.

    CAS  PubMed  Google Scholar 

  256. Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW et al. Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. Br J Haematol 2003; 122: 454–456.

    CAS  PubMed  Google Scholar 

  257. Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 2001; 276: 48627–48630.

    CAS  PubMed  Google Scholar 

  258. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    CAS  PubMed  Google Scholar 

  259. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    CAS  PubMed  Google Scholar 

  260. Liu TC, Lin PM, Chang JG, Lee JP, Chen TP, Lin SF . Mutation analysis of PTEN/MMAC1 in acute myeloid leukemia. Am J Hematol 2000; 63: 170–175.

    CAS  PubMed  Google Scholar 

  261. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    CAS  PubMed  Google Scholar 

  262. Aggerholm A, Gronbaek K, Guldberg P, Hokland P . Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur J Haematol 2000; 65: 109–113.

    CAS  PubMed  Google Scholar 

  263. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  PubMed  Google Scholar 

  264. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    CAS  PubMed  Google Scholar 

  265. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Steelman LS, Navolanic PM, Sokolosky ML, Taylor JR, Lehmann BD, Chappell WH et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 2008, (in press).

  267. Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J . Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res 1997; 57: 3657–3659.

    CAS  PubMed  Google Scholar 

  268. Singh B, Ittmann MM, Krolewski JJ . Sporadic breast cancers exhibit loss of heterozygosity on chromosome segment 10q23 close to the Cowden disease locus. Genes Chromosomes Cancer 1998; 21: 166–171.

    CAS  PubMed  Google Scholar 

  269. Feilotter HE, Coulon V, McVeigh JL, Boag AH, Dorion-Bonnet F, Duboue B et al. Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma. Br J Cancer 1999; 79: 718–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Tsutsui S, Inoue H, Yasuda K, Suzuki K, Higashi H, Era S et al. Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology 2005; 68: 398–404.

    CAS  PubMed  Google Scholar 

  271. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 2007; 128: 141–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128: 157–170.

    CAS  PubMed  Google Scholar 

  273. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    CAS  PubMed  Google Scholar 

  274. Luo JM, Liu ZL, Hao HL, Wang FX, Dong ZR, Ohno R . Mutation analysis of SHIP gene in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2004; 12: 420–426.

    CAS  PubMed  Google Scholar 

  275. Hollestelle A, Elstrodt F, Nagel JHA, Kallemeijn WW . Phosphatidylinositol-3-OH kinase or Ras pathway mutations in human breast cancer cell lines. Mol Cancer Res 2007; 5: 195–201.

    CAS  PubMed  Google Scholar 

  276. Staal SP . Molecular cloning of the Akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 1987; 84: 5034–5037.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 1992; 89: 9267–9271.

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomar DA, Watson DK et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by anti-sense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    CAS  PubMed  Google Scholar 

  280. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007; 448: 439–444.

    CAS  PubMed  Google Scholar 

  281. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Tibes R, Kornblau SM, Qiu Y, Mousses SM, Robbins C, Moses T et al. PI3K/Akt pathway activation in acute myeloid leukaemias is not associated with AKT1 pleckstrin homology domain mutation. Br J Haematol 2008; 140: 344–347.

    CAS  PubMed  Google Scholar 

  283. Lin J, Adam RM, Santiestevan E, Freeman MR . The phosphatidylinositol 3′-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res 1999; 59: 2891–2897.

    CAS  PubMed  Google Scholar 

  284. Fry MJ . Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001; 3: 304–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Lin X, Bohle AS, Dohrmann P, Leuschner I, Schulz A, Kremer B et al. Overexpression of phosphatidylinositol 3-kinase in human lung cancer. Langenbecks Arch Surg 2001; 386: 293–301.

    CAS  PubMed  Google Scholar 

  286. Krasilnikov M, Adler V, Fuchs SY, Dong Z, Haimovitz-Friedman A, Herlyn M et al. Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Mol Carcinog 1999; 24: 64–69.

    CAS  PubMed  Google Scholar 

  287. Martinez-Lorenzo MJ, Anel A, Monleon I, Sierra JJ, Piñeiro A, Naval J et al. Tyrosine phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase correlates with high proliferation rates in sublines derived from the Jurkat leukemia. Int J Biochem Cell Biol 2000; 32: 435–445.

    CAS  PubMed  Google Scholar 

  288. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 2004; 96: 926–935.

    CAS  PubMed  Google Scholar 

  289. Frogne T, Jepsen JS, Larsen SS, Fog CK, Brockdorff BL, Lykkesfeldt AE . Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 2005; 12: 599–614.

    CAS  PubMed  Google Scholar 

  290. Kirkegaard T, Witton CJ, McGlynn LM, Tovey SM, Dunne B, Lyon A et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 2005; 207: 139–146.

    CAS  PubMed  Google Scholar 

  291. Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 2006; 20: 230–238.

    CAS  PubMed  Google Scholar 

  292. Mantovani I, Cappellini A, Tazzari PL, Papa V, Cocco L, Martelli AM . Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. J Cell Physiol 2006; 207: 836–844.

    CAS  PubMed  Google Scholar 

  293. Nyakern M, Cappellini A, Mantovani J, Martelli AM . Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol Cancer Ther 2006; 5: 1559–1570.

    CAS  PubMed  Google Scholar 

  294. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    CAS  PubMed  Google Scholar 

  295. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312..

    CAS  PubMed  Google Scholar 

  296. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    CAS  PubMed  Google Scholar 

  297. Golub TR, Barker GF, Stegmaier K, Gilliland DG . The TEL gene contributes to the pathogenesis of myeloid and lymphoid leukemias by diverse molecular genetic mechanisms. Curr Top Microbiol Immunol 1997; 220: 67–79.

    CAS  PubMed  Google Scholar 

  298. Quentmeier H, Reinhardt J, Zabgorski M, Drexler HG . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120.

    CAS  PubMed  Google Scholar 

  299. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16–60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    CAS  PubMed  Google Scholar 

  300. Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–1989.

    CAS  PubMed  Google Scholar 

  301. Weisser M, Haferlach C, Hiddemann W, Schnittger S . The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and is independent of pretreatment risk factors. Leukemia 2007; 21: 1177–1182.

    CAS  PubMed  Google Scholar 

  302. van der Reijden BA, Dauwerse HG, Giles RH, Jagmohan-Changur S, Wijmenga C, Liu PP et al. Genomic acute myeloid leukemia-associated inv(16)(p13q22) breakpoints are tightly clustered. Oncogene 1999; 18: 543–550.

    CAS  PubMed  Google Scholar 

  303. Roti G, Rosati R, Bonasso R, Gorello P, Diverio D, Martelli MF et al. Denaturing high-performance liquid chromatography: a valid approach for identifying NPM1 mutations in acute myeloid leukemia. J Mol Diagn 2006; 8: 254–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  305. Shih LY, Liang DC, Fu JF, Wu JH, Wang PN, Lin TL et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 2006; 20: 218–223.

    CAS  PubMed  Google Scholar 

  306. Warrell Jr RP, de Thé H, Wang ZY, Degos L . Acute promyelocytic leukemia. N Engl J Med 1993; 329: 177–189.

    CAS  PubMed  Google Scholar 

  307. Ritter M, Kattmann D, Teichler S, Hartmann O, Samuelsson MK, Burchert A et al. Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia 2006; 20: 437–443.

    CAS  PubMed  Google Scholar 

  308. Mikesch JH, Steffen B, Berdel WE, Serve H, Muller-Tidow C . Themerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647.

    CAS  PubMed  Google Scholar 

  309. Liu Y, Chen L, Ko TC, Fields AP, Thompson EA . Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene 2006; 25: 3565–3575.

    CAS  PubMed  Google Scholar 

  310. Trubia M, Albano F, Cavazzini F, Cambrin GR, Quarta G, Fabbiano F et al. Characterization of a recurrent translocation t(2;3) (p15–22;q26) occurring in acute myeloid leukaemia. Leukemia 2006; 20: 48–54.

    CAS  PubMed  Google Scholar 

  311. Raimondi SC, Dube ID, Valentine MB, Mirro Jr J, Watt HJ, Larson RA et al. Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia 1989; 3: 42–47.

    CAS  PubMed  Google Scholar 

  312. Fallini B, Bigerna B, Pucciarini A, Tiacci E, Mecucci C, Morris SW et al. Aberrant subcellular expression of nucleophosmin and NPM–MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+AML. Leukemia 2006; 20: 368–371.

    Google Scholar 

  313. Fornerod M, Boer J, van Baal S, Morreau H, Grosveld G . Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 1996; 13: 1801–1808.

    CAS  PubMed  Google Scholar 

  314. Garcon L, Libura M, Delabesse E, Valensi F, Asnafi V, Berger C et al. DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification. Leukemia 2005; 19: 1338–1344.

    CAS  PubMed  Google Scholar 

  315. Shikami M, Miwa H, Nishii K, Takahashi T, Shiku H, Tsutani H et al. Myeloid differentiation antigen and cytokine receptor expression on acute myelocytic leukaemia cells with t(16;21)(p11;q22): frequent expression of CD56 and interleukin-2 receptor alpha chain. Br J Haematol 1999; 105: 711–719.

    CAS  PubMed  Google Scholar 

  316. Choi HW, Shin MG, Sawyer JR, Cho D, Kee SJ, Baek HJ et al. Unusual type of TLS/FUS-ERG chimeric transcript in a pediatric acute myelocytic leukemia with 47,XX,_10,t(16;21)(p11;q22). Cancer Genet Cytogenet 2006; 167: 172–176.

    CAS  PubMed  Google Scholar 

  317. Nakamura T . NUP98 fusion in human leukemia: dysregulation of the nuclear pore and homeodomain proteins. Int J Hematol 2005; 82: 21–27.

    CAS  PubMed  Google Scholar 

  318. Romana SP, Radford-Weiss I, Ben Abdelali R, Schluth C, Petit A, Dastugue N et al. NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogenetique Hematologigue. Leukemia 2006; 20: 696–706.

    CAS  PubMed  Google Scholar 

  319. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995; 86: 4263–4269.

    CAS  PubMed  Google Scholar 

  320. Inukai T, Yokota S, Okamoto T, Nemoto A, Akahane K, Takahashi K et al. Clonotypic analysis of acute lymphoblastic leukemia with a double TEL–AML1 fusion at onset and relapse. Leukemia 2006; 20: 363–365.

    CAS  PubMed  Google Scholar 

  321. DiMartino JF, Cleary ML . MLL rearrangements in hematological malignancies: lessons from clinical and biological studies. Br J Haemotol 1999; 106: 614–626.

    CAS  Google Scholar 

  322. Jansen MW, van der Velden VH, van Dongen JJ . Efficient and easy detection of MLL–AF4, MLL–AF9 and MLL–ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia 2005; 19: 2016–2018.

    CAS  PubMed  Google Scholar 

  323. DeBraekeleer M, Morel F, Le Bris MJ, Herry A, Douet-Guilbert N . The MLL gene and translocations involving chromosomal band 11q23 in acute leukemia. Anticancer Res 2005; 25: 1931–1944.

    CAS  Google Scholar 

  324. Foa R, Vitale A, Mancini M, Cuneo A, Mecucci C, Elia L et al. E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol 2003; 120: 484–487.

    CAS  PubMed  Google Scholar 

  325. Prima V, Gore L, Caires A, Boomer T, Yoshinari M, Imaizumi M et al. Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia 2005; 19: 806–813.

    CAS  PubMed  Google Scholar 

  326. Gotoh A, Broxmeyer HE . function of BCR/ABL and related proto-oncogenes. Curr Opin Hematol 1997; 4: 3–11.

    CAS  PubMed  Google Scholar 

  327. Pane F, Cimino G, Izzo B, Camera A, Vitale A, Quintarelli C et al. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 2005; 19: 628–635.

    CAS  PubMed  Google Scholar 

  328. Fornerod M, Boer J, van Baal S, Morreau H, Grosveld G . Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 1998; 7: 3199–3292.

    Google Scholar 

  329. Chen X, Pan Q, Stow P, Behm FG, Goorha R, Pui CH et al. Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with TAL-1 deletion using a standardized real-time PCR assay. Leukemia 2002; 15: 166–170.

    Google Scholar 

  330. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leades to transcriptional activation of HOXA10 and HOXAll in a subset of T-cell acute lymphoblastic leukemia. Leukemia 2005; 19: 358–366.

    CAS  PubMed  Google Scholar 

  331. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, Brugman MH et al. Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy. Leukemia 2007; 21: 754–763.

    CAS  PubMed  Google Scholar 

  333. Hecht JL, Aster JC . Molecular biology of Burkitt's lymphoma. J Clin Oncol 2000; 18: 3707–3721.

    CAS  PubMed  Google Scholar 

  334. Liu JN, Deng R, Guo JF, Zhou JM, Feng GK, Huang ZS et al. Inhibition of myc promoter and telomerase activity and induction of delayed apoptosis by SYUIQ-5, a novel G-quadruplex interactive agent in leukemia cells. Leukemia 2007; 21: 1300–1302.

    CAS  PubMed  Google Scholar 

  335. Turner SD, Alexander DR . Fusion tyrosine kinase mediated signaling pathways in the transformation of haematopoietic cells. Leukemia 2006; 20: 573–582.

    Google Scholar 

  336. Alvarez-Larran A, Cervantes F, Bellosillo B, Giralt M, Julia A, Hernandez-Boluda JC et al. Essential thrombocythemia in young individuals: frequency and risk factors for vascular events and evolution to myelofibrosis in 126 patients. Leukemia 2007; 21: 1218–1223.

    CAS  PubMed  Google Scholar 

  337. Metzgeroth G, Walz C, Score J, Siebert R, Schnittger S, Haferlach C et al. Recurrent finding of the FIP1L1–PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007; 21: 1183–1188.

    CAS  PubMed  Google Scholar 

  338. Jost E, Do ON, Dahl E, Maintz CE, Jousten P, Habets L et al. Epigenetic alterations complement mutation of Jak2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 2007; 21: 505–510.

    CAS  PubMed  Google Scholar 

  339. Mesa RA, Tefferi A, Lasho TS, Loegering D, McClure RF, Powell HL et al. Janus kinase (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis ion myelofibrosis with myeloid metaplasia. Leukemia 2006; 20: 1800–1808.

    CAS  PubMed  Google Scholar 

  340. Steensma DP, Caudill JS, Pardanani A, McClure RF, Lasho TL, Tefferi A . MPL W515 and Jak2 V617 mutation analysis in patients with refractory anemia with ringed sideroblasts and an elevated platelet count. Leukemia 2006; 20: 971–978.

    CAS  PubMed  Google Scholar 

  341. Vannucchi AM, Pancrazzi A, Bogani C, Antonioli E, Guglielmelli P . A quantitative assay for Jak2 (V617F) mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia 2006; 20: 1055–1060.

    CAS  PubMed  Google Scholar 

  342. DeKeersmaecker K, Cools J . Chronic myeloproliferative disorders: a tyrosine kinase tale. Review. Leukemia 2006; 20: 200–205.

    CAS  Google Scholar 

  343. Bellosillo B, Martinez-Aviles L, Gimeno E, Florensa L, Longaron R, Navarro G et al. A higher Jak2 V617F-mutated clone is observed in platelets than in granulocytes from essential thrombocythemia patients, but not in patients with polycythemia vera and primary myelofibrosis. Leukemia 2007; 21: 1331–1332.

    CAS  PubMed  Google Scholar 

  344. Nishii K, Nanbu R, Lorenzo VF, Monma F, Kato K, Ryuu H et al. Expression of the Jak2 V617F mutation is not found in de novo AML and MDS but is detected in MDS-derived leukemia of megakaryoblastic nature. Leukemia 2007; 21: 1337–1338.

    CAS  PubMed  Google Scholar 

  345. Wong CLP, Ma ESK, Wang CLN, Lam HY, Ma SY . Jak2 V617F due to a novel TG → CT mutation at nucleotides 1848–1849: diagnostic implication. Leukemia 2007; 21: 1344–1346.

    CAS  PubMed  Google Scholar 

  346. Ohyashiki K, Aota Y, Akahane D, Gotoh A, Ohyashiki JH . Jak2 (V617F) mutational status as determined by semiquantitative sequence-specific primer-single molecule fluorescence detection assay is linked to clinical features in chronic myeloproliferative disorders. Leukemia 2007; 21: 1097–1099.

    CAS  PubMed  Google Scholar 

  347. Hermouet S, Dobo I, Lippert E, Boursier M-C, Ergand L, Perrault-Hu F et al. Comparison of whole blood vs purified blood granulocytes for the detection and quantitation of Jak2(V617F). Leukemia 2007; 21: 112801130.

    Google Scholar 

  348. Inami M, Inokuchi K, Okabe M, Kosaka F, Mitamura Y, Yamaguchi H et al. Polycythemia associated with the Jak2V617F mutation emerged during treatment of chronic myelogenous leukemia. Leukemia 2007; 21: 1103–1104.

    CAS  PubMed  Google Scholar 

  349. Schnittger S, Bacher U, Kern W, Haferlach C, Haferlach T . Jak2 seems to be a typical cooperating mutation in therapy-related t(8;21)/AML1-ETO-positive AML. Leukemia 2007; 21: 183–184.

    CAS  PubMed  Google Scholar 

  350. Verstovsek S, Silver RT, Cross NC, Tefferi A . Jak2V617F mutational frequency in polycythemia vera: 100%,>90%. Leukemia 2006; 20: 2067.

    CAS  PubMed  Google Scholar 

  351. Mesa RA, Tefferi A, Li CY, Steensma DP . Hematologic and cytogenetic response to lenalidomide monotherapy in acute myeloid leukemia arising from Jak2(V617F) positive, del(5)(q13q33) myelodysplastic syndrome. Leukemia 2006; 20: 2063–2064.

    CAS  PubMed  Google Scholar 

  352. Renneville A, Quesnel B, Charpentier A, Terriou L, Crinquette A, Lai JL . High occurrence of Jak2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia 2006; 20: 2067–2070.

    CAS  PubMed  Google Scholar 

  353. Ceesay MM, Lea NC, Ingram W, Westwood NB, Gäken J, Mohamedali A et al. The Jak2 V617F mutation is rare in RARS but common in RARS-T. Leukemia 2006; 20: 2060–2061.

    CAS  PubMed  Google Scholar 

  354. Di Ianni M, Moretti L, Del Papa B, Gaozza E, Bell AS, Falzetti F et al. A microelectronic DNA chip detects the V617F Jak-2 mutation in myeloproliferative disorders. Leukemia 2006; 20: 1895–1897.

    CAS  PubMed  Google Scholar 

  355. Florensa L, Bellosillo B, Besses C, Puigdecanet E, Espinet B, Pérez-Vila E et al. Jak2 V617F mutation analysis in different myeloid lineages (granulocytes, platelets, CFU-MK, BFU-E and CFU-GM) in essential thrombocythemia patients. Leukemia 2006; 20: 1903–1905.

    CAS  PubMed  Google Scholar 

  356. Fiorini A, Farina G, Reddiconto G, Palladino M, Rossi E, Za T et al. Screening of Jak2 V617F mutation in multiple myeloma. Leukemia 2006; 20: 1912–1913.

    CAS  PubMed  Google Scholar 

  357. Park MJ, Shimada A, Asada H, Koike K, Tsuchida M, Hayashi Y . Jak2 mutation in a boy with polycythemia vera, but not in other pediatric hematologic disorders. Leukemia 2006; 20: 1453–1454.

    CAS  PubMed  Google Scholar 

  358. Chen CY, Lin LI, Tang JL, Tsay W, Chang HH, Yeh YC et al. Acquisition of Jak2, PTPN11, and RAS mutations during disease progression in primary myelodysplastic syndrome. Leukemia 2006; 20: 1155–1158.

    PubMed  Google Scholar 

  359. Murati A, Adélaïde J, Gelsi-Boyer V, Etienne A, Rémy V, Fezoui H et al. t(5;12)(q23–31;p13) with ETV6–ACSL6 gene fusion in polycythemia vera. Leukemia 2006; 20: 1175–1178.

    CAS  PubMed  Google Scholar 

  360. Yip SF, So CC, Chan AY, Liu HY, Wan TsK, Chan LC . The lack of association between Jak2 V617F mutation and myelodysplastic syndrome with or without myelofibrosis. Leukemia 2006; 20: 1165.

    CAS  PubMed  Google Scholar 

  361. McClure R, Mai M, Lasho T . Validation of two clinically useful assays for evaluation of Jak2 V617F mutation in chronic myeloproliferative disorders. Leukemia 2006; 20: 168–171.

    CAS  PubMed  Google Scholar 

  362. Melzner I, Weniger MA, Menz CK, Möller P . Absence of the Jak2 V617F activating mutation in classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Leukemia 2006; 20: 157–158.

    CAS  PubMed  Google Scholar 

  363. Bellosillo B, Besses C, Florensa L, Solé F, Serrano S . Jak2 V617F mutation, PRV-1 overexpression and endogenous erythroid colony formation show different coexpression patterns among Ph-negative chronic myeloproliferative disorders. Leukemia 2006; 20: 736–737.

    CAS  PubMed  Google Scholar 

  364. Desta F, Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Activating mutations of Jak2V617F are uncommon in t-MDS and t-AML and are only observed in atypic cases. Leukemia 2006; 20: 547–548.

    CAS  PubMed  Google Scholar 

  365. Vizmanos JL, Ormazábal C, Larráyoz MJ, Cross NC, Calasanz MJ . Jak2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia 2006; 20: 534–535.

    CAS  PubMed  Google Scholar 

  366. Kratz CP, Böll S, Kontny U, Schrappe M, Niemeyer CM, Stanulla M . Mutational screen reveals a novel Jak2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 2006; 20: 381–383.

    CAS  PubMed  Google Scholar 

  367. James C, Delhommeau F, Marzac C, Teyssandier I, Couédic JP, Giraudier S et al. Detection of Jak2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia 2006; 20: 350–353.

    CAS  PubMed  Google Scholar 

  368. Ohyashiki K, Aota Y, Akahane D, Gotoh A, Miyazawa K, Kimura Y et al. The Jak2 V617F tyrosine kinase mutation in myelodysplastic syndromes (MDS) developing myelofibrosis indicates the myeloproliferative nature in a subset of MDS patients. Leukemia 2005; 19: 2359–2360.

    CAS  PubMed  Google Scholar 

  369. Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V et al. Clinical implications of the Jak2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19: 1847–1849.

    CAS  PubMed  Google Scholar 

  370. Chen CY, Lin LI, Tang JL, Tsay W, Chang HH, Yeh YC et al. Acquisition of Jak2, PTPN11, and RAS mutations during disease progression in primary myelodysplastic syndrome. Leukemia 2006; 20: 1155–1158.

    PubMed  Google Scholar 

  371. Zhang B, Groffen J, Heisterkamp N . Increased resistance to a farnesyltransferase inhibitor by N-cadherin expression in Bcr/Abl-P190 lymphoblastic leukemia cells. Leukemia 2007; 21: 1189–1197.

    CAS  PubMed  Google Scholar 

  372. Tagliafico E, Tenedini E, Manfredini R, Grande A, Ferrari F, Roncaglia E et al. Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 2006; 20: 1751–1758.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JAM and LSS have been supported in part by a grant from the NIH (R01098195). JB was supported in part by the Deutsche Krebshilfe. AB, PL and AT have been supported in part from grants from Associazione Italiana Ricerca sul Cancro (AIRC). AMM has been supported in part by grants from the CARISBO Foundation and the Progetti Strategici Università di Bologna EF2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A McCubrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steelman, L., Abrams, S., Whelan, J. et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22, 686–707 (2008). https://doi.org/10.1038/leu.2008.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.26

Keywords

This article is cited by

Search

Quick links