Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis

Abstract

Carbon monoxide (CO) can arrest cellular respiration, but paradoxically, it is synthesized endogenously by heme oxygenase type 1 (Ho-1) in response to ischemic stress. Ho-1–deficient (Hmox1−/−) mice exhibited lethal ischemic lung injury, but were rescued from death by inhaled CO. CO drove ischemic protection by activating soluble guanylate cyclase and thereby suppressed hypoxic induction of the gene encoding plasminogen activator inhibitor-1 (PAI-1) in mononuclear phagocytes, which reduced accrual of microvascular fibrin. CO-mediated ischemic protection observed in wild-type mice was lost in mice null for the gene encoding PAI-1 (Serpine1). These data establish a fundamental link between CO and prevention of ischemic injury based on the ability of CO to derepress the fibrinolytic axis. These data also point to a potential therapeutic use for inhaled CO.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of the Hmox1 by ischemic stress or inhaled CO protects against ischemic lung tissue injury.
Figure 2: Effects of inhaled CO.
Figure 3: Effect of ischemia or endotoxin challenge with or without CO inhalation on coagulation and fibrinolytic axes.
Figure 4: Localization of PAI-1 expression to mononuclear phagocytes and in vitro hypoxia as a paradigm for ischemia.
Figure 5: Mechanism by which CO suppresses ischemic or hypoxic induction of PAI-1.

Similar content being viewed by others

References

  1. Verma, A., Hirsch, D.J., Glatt, C.E., Ronnett, G.V. & Snyder, S.H. Carbon monoxide: a putative neural messenger. Science 259, 381–384 (1993).

    Article  CAS  Google Scholar 

  2. Zhuo, M., Small, S.A., Kandel, E.R. & Hawkins, R.D. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260, 1946–1950 (1993).

    Article  CAS  Google Scholar 

  3. Goda, N. et al. Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J. Clin. Invest. 101, 604–612 (1998).

    Article  CAS  Google Scholar 

  4. Morita, T., Perrella, M.A., Lee, M.E. & Kourembanas, S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. USA 92, 1475–1479 (1995).

    Article  CAS  Google Scholar 

  5. Morita, T. & Kourembanas, S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J. Clin. Invest. 96, 2676–2682 (1995).

    Article  CAS  Google Scholar 

  6. Choi, A.M. & Alam, J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Respir. Cell. Mol. Biol. 15, 9–19 (1996).

    Article  CAS  Google Scholar 

  7. Lee, P.J., Alam, J., Wiegand, G.W. & Choi, A.M. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc. Natl. Acad. Sci. USA 93, 10393–10398 (1996).

    Article  CAS  Google Scholar 

  8. Otterbein, L., Sylvester, S.L. & Choi, A.M. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1. Am. J. Respir. Cell Mol. Biol. 13, 595–601 (1995).

    Article  CAS  Google Scholar 

  9. Poss, K.D. & Tonegawa, S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA 94, 10925–10930 (1997).

    Article  CAS  Google Scholar 

  10. Taylor, J.L., Carraway, M.S. & Piantadosi, C.A. Lung-specific induction of heme oxygenase-1 and hyperoxic lung. Am. J. Physiol 274, L582–L590 (1998).

    CAS  PubMed  Google Scholar 

  11. Vile, G.F., Basu-Modak, S., Waltner, C. & Tyrrell, R.M. Heme oxygenase 1 mediates an adaptive response to oxidative stress. Proc. Natl. Acad. Sci. USA 91, 2607–2610 (1994).

    Article  CAS  Google Scholar 

  12. Vile, G.F. & Tyrrell, R.M. Oxidative stress resulting from ultraviolet A irradiation of human. J. Biol. Chem. 268, 14678–14681 (1993).

    CAS  PubMed  Google Scholar 

  13. Otterbein, L.E. et al. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J. Clin. Invest. 103, 1047–1054 (1999).

    Article  CAS  Google Scholar 

  14. Maines, M.D., Raju, V.S. & Panahian, N. Spin trap (N-t-butyl—-phenylnitrone)-mediated suprainduction. J. Pharmacol. Exp. Ther. 291, 911–919 (1999).

    CAS  PubMed  Google Scholar 

  15. Amersi, F. et al. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J. Clin. Invest. 104, 1631–1639 (1999).

    Article  CAS  Google Scholar 

  16. Hancock, W.W., Buelow, R., Sayegh, M.H. & Turka, L.A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nature Med. 4, 1392–1396 (1998).

    Article  CAS  Google Scholar 

  17. Panahian, N., Yoshiura, M. & Maines, M.D. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72, 1187–1203 (1999).

    Article  CAS  Google Scholar 

  18. Dore, S. et al. Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol. Med. 5, 656–663 (1999).

    Article  CAS  Google Scholar 

  19. Hayashi, S. et al. Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ. Res. 85, 663–671 (1999).

    Article  CAS  Google Scholar 

  20. Bowry, V.W., Mohr, D., Cleary, J. & Stocker, R. Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. J. Biol. Chem. 270, 5756–5763 (1995).

    Article  CAS  Google Scholar 

  21. Willis, D., Moore, A.R., Frederick, R. & Willoughby, D.A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nature Med. 2, 87–90 (1996).

    Article  CAS  Google Scholar 

  22. Otterbein, L.E. et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Med. 6, 422–428 (2000).

    Article  CAS  Google Scholar 

  23. Weng, Y.H., Tatarov, A., Bartos, B.P., Contag, C.H. & Dennery, P.A. HO-1 expression in type II pneumocytes after transpulmonary gene delivery. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L1273–L1279 (2000).

    Article  CAS  Google Scholar 

  24. Thom, S.R., Fisher, D., Xu, Y.A., Notarfrancesco, K. & Ischiropoulos, H. Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc. Natl. Acad. Sci. USA 97, 1305–1310 (2000).

    Article  CAS  Google Scholar 

  25. Naka, Y., Toda, K., Kayano, K., Oz, M.C. & Pinsky, D.J. Failure to express the P-selectin gene or P-selectin blockade confers early pulmonary protection after lung ischemia or transplantation. Proc. Natl. Acad. Sci. USA 94, 757–761 (1997).

    Article  CAS  Google Scholar 

  26. Okada, K. et al. Potentiation of endogenous fibrinolysis and rescue from lung ischemia/reperfusion injury in interleukin (IL)-10-reconstituted IL-10 null mice. J. Biol. Chem. 275, 21468–21476 (2000).

    Article  CAS  Google Scholar 

  27. Naka, Y., Marsh, H.C., Scesney, S.M., Oz, M.C. & Pinsky, D.J. Complement activation as a cause for primary graft failure in an isogeneic rat model of hypothermic lung preservation and transplantation. Transplantation 64, 1248–1255 (1997).

    Article  CAS  Google Scholar 

  28. Pinsky, D.J. et al. The nitric oxide/cyclic GMP pathway in organ transplantation: critical role in successful lung preservation. Proc. Natl. Acad. Sci. USA 91, 12086–12090 (1994).

    Article  CAS  Google Scholar 

  29. Yet, S.F. et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J. Clin. Invest. 103, R23–R29 (1999).

    Article  CAS  Google Scholar 

  30. Poss, K.D. & Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 94, 10919–10924 (1997).

    Article  CAS  Google Scholar 

  31. Gettler, A.O. & Freimuth, H.C. The carbon monoxide content of blood under various conditions. Am. J. Clin. Pathol. 11, 603–616 (1940).

    Article  Google Scholar 

  32. Goldbaum, L.R., Ramirez, R.G. & Absalon, K.B. What is the mechanism of carbon monoxide toxicity? Aviat. Space Environ. Med. 46, 1289–1291 (1975).

    CAS  PubMed  Google Scholar 

  33. Sokal, J.A. Lack of the correlation between biochemical effects on rats and blood carboxyhemoglobin concentrations in various conditions of single acute exposure to carbon monoxide. Arch. Toxicol. 34, 331–336 (1975).

    Article  CAS  Google Scholar 

  34. Lawson, C.A. et al. Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation. J. Clin. Invest. 99, 1729–1738 (1997).

    Article  CAS  Google Scholar 

  35. Yan, S.F. et al. Tissue factor transcription driven by Egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc. Natl. Acad. Sci. USA 95, 8298–8303 (1998).

    Article  CAS  Google Scholar 

  36. Pinsky, D.J. et al. Coordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition. J. Clin. Invest. 102, 919–928 (1998).

    Article  CAS  Google Scholar 

  37. Carmeliet, P. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368, 419–24. (1994).

    Article  CAS  Google Scholar 

  38. Carmeliet, P. et al. Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous recombination and characterization. J. Clin. Invest. 92, 2746–2755 (1993).

    Article  CAS  Google Scholar 

  39. Yan, S.F. et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nature Med. 6, 1355–1361 (2000).

    Article  CAS  Google Scholar 

  40. Christodoulides, N., Durante, W., Kroll, M.H. & Schafer, A.I. Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase- stimulatory carbon monoxide. Circulation 91, 2306–2309 (1995).

    Article  CAS  Google Scholar 

  41. Zingarelli, B., Hasko, G., Salzman, A.L. & Szabo, C. Effects of a novel guanylyl cyclase inhibitor on the vascular actions of nitric oxide and peroxynitrite in immunostimulated smooth muscle cells and in endotoxic shock. Crit. Care Med. 27, 1701–1707 (1999).

    Article  CAS  Google Scholar 

  42. Bouchie, J.L., Hansen, H. & Feener, E.P. Natriuretic factors and nitric oxide suppress plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Role of cGMP in the regulation of the plasminogen system. Arterioscler. Thromb. Vasc. Biol. 18, 1771–1779 (1998).

    Article  CAS  Google Scholar 

  43. Ischiropoulos, H. et al. Nitric oxide production and perivascular nitration in brain after carbon monoxide poisoning in the rat. J. Clin. Invest. 97, 2260–2267 (1996).

    Article  CAS  Google Scholar 

  44. Polte, T., Abate, A., Dennery, P.A. & Schroder, H. Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler. Thromb. Vasc. Biol. 20, 1209–1215 (2000).

    Article  CAS  Google Scholar 

  45. Otterbein, L.E. & Choi, A.M. Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol Lung Cell. Mol. Physiol. 279, L1029–L1037 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to recognize the contribution of the late .M.-E. Lee in generating the Ho-1–deficient mice. We thank Y. Zhang, Y.-S. Zou and P. Wiesel for technical assistance; K. Okada for advice; and D. Stern for his review of the final manuscript. This study was supported in part by the US Public Health Service, National Institutes of Health (R01 HL55397, R01 HL59488 and R01 HL60900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Pinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, T., Toda, K., Karimova, A. et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7, 598–604 (2001). https://doi.org/10.1038/87929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing