Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice

Abstract

The importance of cholesterol ester synthesis by acyl CoA:cholesterol acyltransferase (ACAT) enzymes in intestinal and hepatic cholesterol metabolism has been unclear. We now demonstrate that ACAT2 is the major ACAT in mouse small intestine and liver, and suggest that ACAT2 deficiency has profound effects on cholesterol metabolism in mice fed a cholesterol-rich diet, including complete resistance to diet-induced hypercholesterolemia and cholesterol gallstone formation. The underlying mechanism involves the lack of cholesterol ester synthesis in the intestine and a resultant reduced capacity to absorb cholesterol. Our results indicate that ACAT2 has an important role in the response to dietary cholesterol, and suggest that ACAT2 inhibition may be a useful strategy for treating hypercholesterolemia or cholesterol gallstones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of ACAT2-deficient mice.
Figure 2: Protection from diet-induced hypercholesterolemia in ACAT2-deficient mice.
Figure 3: Electron micrographs of negatively stained plasma lipoproteins (density < 1.063 gm/ml) from wild-type (left) and ACAT2-deficient female mice (right) fed the HF/HC diet.
Figure 4: Resistance to diet-induced cholesterol gallstone formation in ACAT2-deficient mice.
Figure 5: Cholesterol absorption in wild-type (▪) and ACAT2-deficient mice (□).
Figure 6: Absence of cholesterol accumulation in livers of ACAT2-deficient mice.

Similar content being viewed by others

References

  1. Bloch, K. Cholesterol: Evolution of structure and function. in Biochemistry of Lipids, Lipoproteins and Membranes (eds. Vance, D.E. & Vance, J.) 363–381 (Elsevier,–Amsterdam, 1991).

    Google Scholar 

  2. Chang, T.Y., Chang, C.C.Y. & Cheng, D. Acyl-coenzyme A:cholesterol acyltransferase. Annu. Rev. Biochem. 66, 613–638 (1997).

    Article  CAS  Google Scholar 

  3. Goodman, D.S. Cholesterol ester metabolism. Physiol. Rev. 45, 747–839 (1965).

    Article  CAS  Google Scholar 

  4. Chang, C.C.Y., Huh, H.Y., Cadigan, K.M. & Chang, T.Y. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J. Biol. Chem. 268, 20747–20755 (1993).

    CAS  PubMed  Google Scholar 

  5. Uelmen, P.J. et al. Tissue-specific expression and cholesterol regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. J. Biol. Chem. 270, 26192–26201 (1995).

    Article  CAS  Google Scholar 

  6. Meiner, V. et al. Tissue expression studies of mouse acyl CoA:cholesterol acyltransferase gene (Acact): Findings supporting the existence of multiple cholesterol esterification enzymes in mice. J. Lipid Res. 38, 1928–1933 (1997).

    CAS  PubMed  Google Scholar 

  7. Meiner, V.L. et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: Evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc. Natl. Acad. Sci. USA 93, 14041–14046 (1996).

    Article  CAS  Google Scholar 

  8. Anderson, R.A. et al. Identification of a form of Acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. 273, 26747–26754 (1998).

    Article  CAS  Google Scholar 

  9. Cases, S. et al. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J. Biol. Chem. 273, 26755–26764 (1998).

    Article  CAS  Google Scholar 

  10. Oelkers, P., Behari, A., Cromley, D., Billheimer, J.T. & Sturley, S.L. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J. Biol. Chem. 273, 26765–26771 (1998).

    Article  CAS  Google Scholar 

  11. Paigen, B., Morrow, A., Brandon, C., Mitchell, D. & Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57, 65–73 (1985).

    Article  CAS  Google Scholar 

  12. Davis, R.A., McNeal, M.M. & Moses, R.L. Intrahepatic assembly of very low density lipoprotein. Competition by cholesterol esters for the hydrophobic core. J. Biol. Chem. 257, 2634–2640 (1982).

    CAS  PubMed  Google Scholar 

  13. Wang, D.Q.-H., Lammert, F., Cohen, D.E., Paigen, B. & Carey, M.C. Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis. Am. J. Physiol. 276, G751–G760 (1999).

    Article  CAS  Google Scholar 

  14. Sehayek, E. et al. Biliary cholesterol excretion: a novel mechanism that regulates dietary cholesterol absorption. Proc. Natl. Acad. Sci. USA 95, 10194–10199 (1998).

    Article  CAS  Google Scholar 

  15. Wilson, M.D. & Rudel, L.L. Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J. Lipid Res. 35, 943–955 (1994).

    CAS  PubMed  Google Scholar 

  16. Young, S.G. et al. A genetic model for absent chylomicron formation: mice producing apolipoprotein B in the liver, but not in the intestine. J. Clin. Invest. 96, 2932–2946 (1995).

    Article  CAS  Google Scholar 

  17. Krause, B.R. & Bocan, T.M.A. ACAT inhibitors: physiologic mechanisms for hypolipidemic and anti-atherosclerotic activities in experimental animals. in Inflammation. Mediators and Pathways (eds. Ruffolo, R.R., Jr. & Hollinger, M.A.), 173–198 (CRC Press, Boca Raton,–Florida, 1995).

    Google Scholar 

  18. Klein, R.L. & Rudel, L.L. Cholesterol absorption and transport in thoracic duct lymph lipoproteins of nonhuman primates. Effect of dietary cholesterol level. J. Lipid Res. 24, 343–356 (1983).

    CAS  PubMed  Google Scholar 

  19. Dixon, J.L. & Ginsberg, H.N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J. Lipid Res. 34, 167–179 (1993).

    CAS  PubMed  Google Scholar 

  20. Purcell-Huynh, D.A. et al. Genetic factors in lipoprotein metabolism. Analysis of a genetic cross between inbred mouse strains NZB/BINJ and SM/J using a complete linkage map approach. J. Clin. Invest. 96, 1845–1858 (1995).

    Article  CAS  Google Scholar 

  21. Khanuja, B. et al. Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proc. Natl. Acad. Sci. USA 92, 7729–7733 (1995).

    Article  CAS  Google Scholar 

  22. Machleder, D. et al. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J. Clin. Invest. 99, 1406–1419 (1997).

    Article  CAS  Google Scholar 

  23. Lammert, F., Wang, D.Q.-H., Cohen, D.E., Paigen, B. & Carey, M.C. Functional and genetic studies of biliary cholesterol secretion in inbred mice: Evidence for a primary role of sister to P-glycoprotein, the canalicular bile salt export pump in cholesterol gallstone pathogenesis. in Bile Acids and Cholestasis (eds. Paumgartner, G., Stiehl, A., Gerok, W., Keppler, D. & Leuschner, U.), 224–228 (Kluwer Academic Publishers, Dordrecht, The–Netherlands, 1999).

    Google Scholar 

  24. Smith, J.L., Hardie, I.R., Pillay, S.P. & de Jersey, J. Hepatic acyl-coenzyme A:cholesterol acyltransferase activity is decreased in patients with cholesterol gallstones. J. Lipid Res. 31, 1993–2000 (1990).

    CAS  PubMed  Google Scholar 

  25. Lee, O., Chang, C.C.Y., Lee, W. & Chang, T.-Y. Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J. Lipid Res. 39, 1722–1727 (1998).

    CAS  PubMed  Google Scholar 

  26. Chang, C.C.Y., Lee, O., Lin, S. & Chang, T.-Y. Quantitative analysis of human acyl-coenzyme A:cholesterol acyltransferase-1 and -2 (ACAT-1 and ACAT-2) in intestines, Caco-2 cells, HepG2 cells, adult and embryonic livers by using specific antibodies. Circulation 100, I–612 (1999).

    Google Scholar 

  27. Chang, C.C.Y. et al. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J. Biol. Chem. 275, 28083–28092 (2000).

    CAS  PubMed  Google Scholar 

  28. Accad, M. et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J. Clin. Invest. 105, 711–719 (2000).

    Article  CAS  Google Scholar 

  29. Mortensen, R. Production of a heterozygous mutant cell line by homologous recombination (single knockout). in Current Protocols in Molecular Biology Vol. 2 (eds. Ausubel, F.M. et al.), 9.16.1–9.16.11 (John Wiley & Sons, New–York, 1999).

    Google Scholar 

  30. Farese, R.V.,Jr. et al. A novel function for apolipoprotein B: lipoprotein synthesis in the yolk sac is critical for maternal–fetal lipid transport in mice. J. Lipid Res. 37, 347–360 (1996).

    CAS  PubMed  Google Scholar 

  31. Smith, J.L., Lear, S.R. & Erickson, S.K. Developmental expression of elements of hepatic cholesterol metabolism in the rat. J. Lipid Res. 36, 641–652 (1995).

    CAS  PubMed  Google Scholar 

  32. Erickson, S.K., Shrewsbury, M.A., Brooks, C. & Meyer, D.J. Rat liver acyl-coenzyme A:cholesterol acyltransferase: its regulation in vivo and some of its properties in vitro. J. Lipid Res. 21, 930–941 (1980).

    CAS  PubMed  Google Scholar 

  33. Horie, Y., Fazio, S., Westerlund, J.R., Weisgraber, K.H. & Rall, S.C., Jr. The functional characteristics of a human apolipoprotein E variant (cysteine at residue 142) may explain its association with dominant expression of type III hyperlipoproteinemia. J. Biol. Chem. 267, 1962–1968 (1992).

    CAS  PubMed  Google Scholar 

  34. Schwarz, M., Russell, D.W., Dietschy, J.M. & Turley, S.D. Marked reduction in bile acid synthesis in cholesterol 7α-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J. Lipid Res. 39, 1833–1843 (1998).

    CAS  PubMed  Google Scholar 

  35. Jensen, D.R. et al. Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Am. J. Physiol. 273, R683–R689 (1997).

    CAS  PubMed  Google Scholar 

  36. McCormick, S.P.A. et al. Transgenic mice that overexpress mouse apolipoprotein B. Evidence that the DNA sequences controlling intestinal expression of the apolipoprotein B gene are distant from the structural gene. J. Biol. Chem. 271, 11963–11970 (1996).

    Article  CAS  Google Scholar 

  37. Hamilton, R.L., Jr., Goerke, J., Guo, L.S.S., Williams, M.C. & Havel, R.J. Unilamellar liposomes made with the French pressure cell: A simple preparative and semiquantitative technique. J. Lipid Res. 21, 981–992 (1980).

    CAS  PubMed  Google Scholar 

  38. Turley, S.D., Daggy, B.P. & Dietschy, J.M. Psyllium augments the cholesterol-lowering action of cholestyramine in hamsters by enhancing sterol loss from the liver. Gastroenterology 107, 444–452 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Moore and B. Jefferson for technical assistance; T. Yu for blastocyst injections; B. Tow for assistance with ACAT assays; D. Newland and D. Sanan for assistance with histology; J. Carroll, J. Hull and S. Gonzales for graphics; S. Ordway and G. Howard for editorial assistance; B. Taylor for manuscript preparation; and D. Mangelsdorf and H. Chen for comments on the manuscript. This work was supported by the National Institutes of Health grants HL57170 (to R.V.F.), HL60844 (to R.L.H.), HL09610 (to John Dietschy), NIH postdoctoral fellowship training grants (to K.K.B. and M.A.), a postdoctoral fellowship from the Austrian Science Fund (to S.N.) and the J. David Gladstone Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert V. Farese Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhman, K., Accad, M., Novak, S. et al. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6, 1341–1347 (2000). https://doi.org/10.1038/82153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing