Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses

Abstract

The role of the opioid system in controlling pain1, reward and addiction2,3 is well established, but its role in regulating other emotional responses is poorly documented in pharmacology4. The μ-, δ- and κ- opioid receptors (encoded by Oprm, Oprd1 and Oprk1, respectively) mediate the biological activity of opioids5. We have generated Oprd1-deficient mice and compared the behavioural responses of mice lacking Oprd1, Oprm (ref. 6) and Oprk1 (ref. 7) in several models of anxiety and depression. Our data show no detectable phenotype in Oprk1−/− mutants, suggesting that κ-receptors do not have a role in this aspect of opioid function; opposing phenotypes in Oprm−/− and Oprd1−/− mutants which contrasts with the classical notion of similar activities of μ- and δ-receptors; and consistent anxiogenic- and depressive-like responses in Oprd1−/− mice, indicating that δ-receptor activity contributes to improvement of mood states. We conclude that the Oprd1-encoded receptor, which has been proposed to be a promising target for the clinical management of pain8,9, should also be considered in the treatment of drug addiction and other mood-related disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of Oprd1.
Figure 2: Anxiety-related behaviour.
Figure 3: Behavioural models of depression.

Similar content being viewed by others

References

  1. Dickenson, A.H. Mechanisms of the analgesic action of opiates and opioids. Br. Med. Bull. 47, 690–702 ( 1991).

    Article  CAS  Google Scholar 

  2. Koob, G.F. Drug of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184 (1992).

    Article  CAS  Google Scholar 

  3. Wise, R.A. Neurobiology of addiction. Curr. Opin. Neurobiol. 6 , 243–251 (1996).

    Article  CAS  Google Scholar 

  4. Naber, D. Opioids in the etiology and treatment of psychiatric disorders. in Handbook Exp Pharm: Opioids II (ed. Herz, A.) 781– 793 (Springer, Berlin, 1993).

    Google Scholar 

  5. Kieffer, B.L. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell. Mol. Neurobiol. 15, 615–635 ( 1995).

    Article  CAS  Google Scholar 

  6. Matthes, H.W.D. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid receptor gene. Nature 383, 819–823 ( 1996).

    Article  CAS  Google Scholar 

  7. Simonin, F. et al. Disruption of the κ-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective κ-agonist U-50,488H and attenuates morphine withdrawal . EMBO J. 17, 886–897 (1998).

    Article  CAS  Google Scholar 

  8. Rapaka, R.S. & Porreca, F. Development of δ opioid peptides as nonaddicting analgesics. Pharm. Res. 8, 1–8 (1991).

    Article  CAS  Google Scholar 

  9. Dondio, G., Ronzoni, S. & Petrillo, P. Non-peptide δ opioid agonists and antagonists . Exp. Opin. Ther. Patents 7, 1075– 1098 (1997).

    Article  CAS  Google Scholar 

  10. Zaki, P.A. et al. Opioid receptor types and subtypes: the δ receptor as a model. Annu. Rev. Pharmacol. Toxicol. 36, 379–401 (1996).

    Article  CAS  Google Scholar 

  11. Zhu, Y. et al. Retention of supraspinal δ-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron 24, 243–252 (1999).

    Article  CAS  Google Scholar 

  12. Matthes, H.W.D. et al. Activity of the δ-opioid receptor is partially reduced while activity of the κ-receptor is maintained in mice lacking the μ-receptor . J. Neurosci. 18, 7285– 7295 (1998).

    Article  CAS  Google Scholar 

  13. Pellow, S., Chopin, M.P., File, S.E. & Briley, M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167 (1985).

    Article  CAS  Google Scholar 

  14. Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genet. 19, 162–166 ( 1998).

    Article  CAS  Google Scholar 

  15. König, M. et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383, 535– 538 (1996).

    Article  Google Scholar 

  16. Calenco-Choukroun, G. et al. Opioid δ agonists and endogenous enkephalins induce different emotional reactivity than μ agonists after injection in the rat ventral tegmental area. Psychopharmacology 103, 493–502 (1991).

    Article  CAS  Google Scholar 

  17. Asakawa, A. et al. Endomorphins have orexigenic and anxiolytic activities in mice. Neuroreport 9, 2265– 2267 (1998).

    Article  CAS  Google Scholar 

  18. Porsolt, R.D., Bertin, A. & Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327–336 (1977).

    CAS  PubMed  Google Scholar 

  19. Baamonde, A. et al. Antidepressant-type effects of endogenous enkephalins protected by systemic RB 101 are mediated by opioid δ and dopamine D1 receptor stimulation. Eur. J. Pharmacol. 216, 157–166 (1992).

    Article  CAS  Google Scholar 

  20. Tejedor-Real, P. et al. Involvement of δ-opioid receptors in the effects induced by endogenous enkephalins on learned helplessness model. Eur. J. Pharmacol. 354, 1–7 ( 1998).

    Article  CAS  Google Scholar 

  21. Kameyama, T., Nagasaka, M. & Yamada, K. Effect of antidepressant drugs on a quickly learned conditioned suppression response in mice. Neuropharmacology 24, 59–63 (1985).

    Article  Google Scholar 

  22. Crestani, F. et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neurosci. 2, 833–839 (1999).

    Article  CAS  Google Scholar 

  23. Rothman, R.B., Holaday, J.W. & Porreca, F. Allosteric coupling among opioid receptors: evidence for an opioid receptor complex. in Handbook of Experimental Pharmacology, Opioids I (ed. Herz, A.) 217–237 (Springer, Berlin, 1993).

    Google Scholar 

  24. Traynor, J.R. & Elliot, J. δ-opioid receptor subtypes and cross talk with μ-receptors. Trends Pharmacol. Sci. 14, 84–85 (1993).

    Article  CAS  Google Scholar 

  25. Mansour, A., Fox, C.A., Akil, H. & Watson, S.J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 18, 22–29 (1995).

    Article  CAS  Google Scholar 

  26. Walsh, T.D. Antidepressants in chronic pain. Clin. Neuropharmacol. 6, 271–295 (1983).

    Article  CAS  Google Scholar 

  27. Kieffer, B.L., Befort, K., Gaveriaux-Ruff, C. & Hirth, C.G. The δ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl Acad. Sci. USA 89, 12048–12052 (1992).

    Article  CAS  Google Scholar 

  28. Lufkin, T. et al. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 88, 1105–1119 ( 1991).

    Article  Google Scholar 

  29. Smadja, C. et al. Opposite role of CCKA and CCKB receptors in the modulation of endogenous enkephalin antidepressant-like effects. Psychopharmacology 120, 400–408 ( 1995).

    Article  CAS  Google Scholar 

  30. Valverde, O., Fournié-Zaluski, M.C., Roques, B.P. & Maldonado, R. Eur. J. Pharmacol. 312, 15– 25 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Metzger for the Neo cassette; F. Ruffenach for oligonucleotide synthesis; S. Vicaire for DNA sequencing; IGBMC for ES cell culture and microinjection services; J.P. Poirier and N. Schallon for animal care; V. Fraulob and P. Dollé for in situ hybridization; E. Borrelli for probes; A. Borsodi and G. Toth for [3H]Naltrindole; and P. Chambon, F. Pattus and J.C. Stoclet for their support. This work was funded by grants from the Mission Interministérielle de Lutte contre la Drogue et la Toxicomanie (B.L.K.), the Centre National de la Recherche Scientifique (B.L.K.), the Association de la Recherche pour le Cancer (B.L.K.), the European Commission (Biomed-2 98-2227, B.L.K. and R.M.), Dr. Esteve S. A. Laboratories (R.M.) and the Spanish Ministry of Health (FIS 99/0624, R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte L. Kieffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filliol, D., Ghozland, S., Chluba, J. et al. Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25, 195–200 (2000). https://doi.org/10.1038/76061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing